Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality

被引:158
|
作者
Ahn, Hyo-Sung
Chen, YangQuan
Podlubny, Igor
机构
[1] Utah State Univ, Coll Engn, CSOIS, Dept Elect & Comp Engn, Logan, UT 84322 USA
[2] Tech Univ Kosice, Dept Appl Informat & Proc Control, Kosice 04200, Slovakia
基金
美国国家科学基金会;
关键词
fractional-order linear dynamic systems; robust stability; interval linear time invariant systems; interval matrix;
D O I
10.1016/j.amc.2006.08.099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a new analytical robust stability checking method of fractional-order linear time invariant interval uncertain system. This paper continues the authors ' previous work [YangQuan Chen, Hyo-Sung Ahm, I. Podlubny, Robust stability check of fractional-order linear time invariant systems with interval uncertainties, in: Proceedings of the IEEE Conference on Mechatronics and Automation, Niagara Falls, Canada, July, 2005, pp. 210-215] where matrix perturbation theory was used. For the new robust stability checking, Lyapunov inequality is utilized for finding the maximum eigenvalue of a Hermitian matrix. Through numerical examples, the usefulness and the effectiveness of the newly proposed method are verified. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [1] Controllability, Observability and Stability for a Class of Fractional-Order Linear Time-Invariant Control Systems
    曾庆山
    曹广益
    朱新坚
    JournalofShanghaiJiaotongUniversity, 2004, (02) : 20 - 24
  • [2] Robust Stability of Fractional-Order Linear Time-Invariant Systems: Parametric versus Unstructured Uncertainty Models
    Matusu, Radek
    Senol, Bilal
    Pekar, Libor
    COMPLEXITY, 2018,
  • [3] Stability of fractional-order linear time-invariant systems with multiple noncommensurate orders
    Jiao, Zhuang
    Chen, Yang Quan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3053 - 3058
  • [4] Robust Admissibility and Stabilization of Uncertain Singular Fractional-Order Linear Time-Invariant Systems
    Saliha Marir
    Mohammed Chadli
    IEEE/CAAJournalofAutomaticaSinica, 2019, 6 (03) : 685 - 692
  • [5] Robust Admissibility and Stabilization of Uncertain Singular Fractional-Order Linear Time-Invariant Systems
    Marir, Saliha
    Chadli, Mohammed
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (03) : 685 - 692
  • [6] Handling a Commensurate, Incommensurate, and Singular Fractional-Order Linear Time-Invariant System
    Batiha, Iqbal M.
    Talafha, Omar
    Ababneh, Osama Y.
    Alshorm, Shameseddin
    Momani, Shaher
    AXIOMS, 2023, 12 (08)
  • [7] Maximal Perturbation Bounds for the Robust Stability of Fractional-Order Linear Time-Invariant Parameter-Dependent Systems
    Qian, Ruo-Nan
    Lu, Jun-Guo
    Zhang, Qing-Hao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (03) : 1257 - 1261
  • [8] Supplemental Stability Criteria with New Formulation for Linear Time-Invariant Fractional-Order Systems
    Lv, Yuanda
    Zhang, Jin-Xi
    Zhang, Xuefeng
    FRACTAL AND FRACTIONAL, 2024, 8 (02)
  • [9] Interval estimation for nabla fractional order linear time-invariant systems
    Wei, Yingdong
    Wei, Yiheng
    Wang, Yong
    Xie, Min
    ISA TRANSACTIONS, 2022, 131 : 83 - 94
  • [10] The FCC Stability Criterion for Fractional-Order Linear Time-Invariant Systems with Commensurate or Incommensurate Orders
    Dabiri, Arman
    Butcher, Eric A.
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2839 - 2844