Chromatic roots and hamiltonian paths

被引:18
作者
Thomassen, C [1 ]
机构
[1] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
关键词
D O I
10.1006/jctb.2000.1976
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result is best possible in the sense that ii becomes false if t(0) is replaced by any larger number. (C) 2000 Academic Press.
引用
收藏
页码:218 / 224
页数:7
相关论文
共 50 条
  • [31] AN EVALUATION OF THE NUMBER OF HAMILTONIAN PATHS
    ORLAND, H
    ITZYKSON, C
    DEDOMINICIS, C
    JOURNAL DE PHYSIQUE LETTRES, 1985, 46 (08): : L353 - L357
  • [32] Hamiltonian paths in projective checkerboards
    Forbush, MH
    Hanson, E
    Kim, S
    Mauer-Oats, A
    Merris, R
    Oats-Sargent, J
    Oldham, S
    Sharkey, K
    Witte, D
    ARS COMBINATORIA, 2000, 56 : 147 - 160
  • [33] Hamiltonian Paths in the Square of a Tree
    Radoszewski, Jakub
    Rytter, Wojciech
    ALGORITHMS AND COMPUTATION, 2011, 7074 : 90 - 99
  • [34] Hamiltonian square-paths
    Fan, GH
    Kierstead, HA
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 67 (02) : 167 - 182
  • [35] On Hamiltonian paths in distance graphs
    Loewenstein, Christian
    Rautenbach, Dieter
    Regen, Friedrich
    APPLIED MATHEMATICS LETTERS, 2011, 24 (07) : 1075 - 1079
  • [36] Hamiltonian square roots of skew Hamiltonian quaternionic matrices
    Rodman, Leiba
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2008, 17
  • [37] Hamiltonian square roots of skew-Hamiltonian matrices
    Fassbender, H
    Mackey, DS
    Mackey, N
    Xu, HG
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) : 125 - 159
  • [38] The chromatic number and some hamiltonian properties of graphs
    Li, Rao
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2018, 107 : 3 - 15
  • [39] Chromatic roots and limits of dense graphs
    Csikvari, Peter
    Frenkel, Peter E.
    Hladky, Jan
    Hubai, Tamas
    DISCRETE MATHEMATICS, 2017, 340 (05) : 1129 - 1135
  • [40] CHROMATIC ROOTS - SOME OBSERVATIONS AND CONJECTURES
    FARRELL, EJ
    DISCRETE MATHEMATICS, 1980, 29 (02) : 161 - 167