Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity

被引:1347
作者
Weinberg, Frank [1 ]
Hamanaka, Robert [1 ]
Wheaton, William W. [1 ]
Weinberg, Samuel [1 ]
Joseph, Joy [4 ,5 ]
Lopez, Marcos [4 ,5 ]
Kalyanaraman, Balaraman [4 ,5 ]
Mutlu, Goekhan M. [1 ]
Budinger, G. R. Scott [1 ]
Chandel, Navdeep S. [1 ,2 ,3 ]
机构
[1] Northwestern Univ, Sch Med, Div Pulm & Crit Care, Dept Med, Chicago, IL 60611 USA
[2] Northwestern Univ, Sch Med, Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA
[3] Northwestern Univ, Sch Med, Dept Cell & Mol Biol, Chicago, IL 60611 USA
[4] Med Coll Wisconsin, Dept Biophys, Milwaukee, WI 53226 USA
[5] Med Coll Wisconsin, Free Rad Res Ctr, Milwaukee, WI 53226 USA
基金
美国国家卫生研究院;
关键词
Warburg Effect; glutamine; glycolysis; lung cancer; complex III; AEROBIC GLYCOLYSIS; TRANSFORMED-CELLS; TUMOR SUPPRESSORS; COMPLEX-III; GLUTAMINE; CANCER; EXPRESSION; PROTEIN; KINASE; GROWTH;
D O I
10.1073/pnas.1003428107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Otto Warburg's theory on the origins of cancer postulates that tumor cells have defects in mitochondrial oxidative phosphorylation and therefore rely on high levels of aerobic glycolysis as the major source of ATP to fuel cellular proliferation (the Warburg effect). This is in contrast to normal cells, which primarily utilize oxidative phosphorylation for growth and survival. Here we report that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway. The major function of glycolytic ATP is to support growth under hypoxic conditions. Glutamine conversion into the tricarboxylic acid cycle intermediate alpha-ketoglutarate through glutaminase and alanine aminotransferase is essential for Kras-induced anchorage-independent growth. Mitochondrial metabolism allows for the generation of reactive oxygen species (ROS) which are required for Kras-induced anchorage-independent growth through regulation of the ERK MAPK signaling pathway. We show that the major source of ROS generation required for anchorage-independent growth is the Q(o) site of mitochondrial complex III. Furthermore, disruption of mitochondrial function by loss of the mitochondrial transcription factor A (TFAM) gene reduced tumorigenesis in an oncogenic Kras-driven mouse model of lung cancer. These results demonstrate that mitochondrial metabolism and mitochondrial ROS generation are essential for Kras-induced cell proliferation and tumorigenesis.
引用
收藏
页码:8788 / 8793
页数:6
相关论文
共 27 条
  • [1] The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
    Bell, Eric L.
    Klimova, Tatyana A.
    Eisenbart, James
    Moraes, Carlos T.
    Murphy, Michael P.
    Budinger, G. R. Scott
    Chandel, Navdeep S.
    [J]. JOURNAL OF CELL BIOLOGY, 2007, 177 (06) : 1029 - 1036
  • [2] HIGH AEROBIC GLYCOLYSIS OF RAT HEPATOMA-CELLS IN CULTURE - ROLE OF MITOCHONDRIAL HEXOKINASE - (L-LACTIC ACID-D-GLUCOSE-D-GALACTOSE-LIVER-NEOPLASIA)
    BUSTAMANTE, E
    PEDERSEN, PL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (09) : 3735 - 3739
  • [3] The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
    Christofk, Heather R.
    Vander Heiden, Matthew G.
    Harris, Marian H.
    Ramanathan, Arvind
    Gerszten, Robert E.
    Wei, Ru
    Fleming, Mark D.
    Schreiber, Stuart L.
    Cantley, Lewis C.
    [J]. NATURE, 2008, 452 (7184) : 230 - U74
  • [4] The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
    DeBerardinis, Ralph J.
    Lum, Julian J.
    Hatzivassiliou, Georgia
    Thompson, Craig B.
    [J]. CELL METABOLISM, 2008, 7 (01) : 11 - 20
  • [5] Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
    DeBerardinis, Ralph J.
    Mancuso, Anthony
    Daikhin, Evgueni
    Nissim, Ilana
    Yudkoff, Marc
    Wehrli, Suzanne
    Thompson, Craig B.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (49) : 19345 - 19350
  • [6] Hypoxia, HIF1 and glucose metabolism in the solid tumour
    Denko, Nicholas C.
    [J]. NATURE REVIEWS CANCER, 2008, 8 (09) : 705 - 713
  • [7] Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: Role of mitochondrial superoxide
    Dhanasekaran, A
    Kotamraju, S
    Karunakaran, C
    Kalivendi, SV
    Thomas, S
    Joseph, J
    Kalyanaraman, B
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 2005, 39 (05) : 567 - 583
  • [8] Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance
    Fantin, Valeria R.
    St-Pierre, Julie
    Leder, Philip
    [J]. CANCER CELL, 2006, 9 (06) : 425 - 434
  • [9] Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production
    Funes, Juan M.
    Quintero, Marisol
    Henderson, Stephen
    Martinez, Dolores
    Qureshi, Uzma
    Westwood, Claire
    Clements, Mark O.
    Bourboulia, Dimitra
    Pedley, R. Barbara
    Moncada, Salvador
    Boshoff, Chris
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (15) : 6223 - 6228
  • [10] c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
    Gao, Ping
    Tchernyshyov, Irina
    Chang, Tsung-Cheng
    Lee, Yun-Sil
    Kita, Kayoko
    Ochi, Takafumi
    Zeller, Karen I.
    De Marzo, Angelo M.
    Van Eyk, Jennifer E.
    Mendell, Joshua T.
    Dang, Chi V.
    [J]. NATURE, 2009, 458 (7239) : 762 - U100