Fast Lagrange-Newton transformations

被引:3
|
作者
Smarzewski, Ryszard [1 ]
Kapusta, Joanna [1 ]
机构
[1] John Paul II Catholic Univ Lublin, Dept Math & Comp Sci, PL-20708 Lublin, Poland
关键词
fast algorithms; Lagrange-Newton transformation; special configurations of knots; threshold secret sharing scheme; computational complexity;
D O I
10.1016/j.jco.2006.12.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we present explicit vector formulae for the Lagrange-Newton transformation L: K-n -> K-n and its inverse L-1 with respect to interpolating knots x(i) = alpha x(i-1) + beta (i = 1, 2,.... n - 1 : x(0) = gamma). where alpha not equal 0, beta, gamma belong to a field K. These formulae depend on the wrapped convolution, Horner transformation, iterative product and coordinatewise vector operations. All these transformations and operations, except of O (n log n)-wrapped convolution, have running time of O(n) base operations from the field K. Moreover. we give an application of these fast interpolating transformations to threshold secret sharing schemes in cryptography. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:336 / 345
页数:10
相关论文
共 50 条
  • [41] FAST (STRUCTURED) NEWTON COMPUTATIONS
    Coleman, Thomas F.
    Xu, Wei
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (02): : 1175 - 1191
  • [42] Fast Newton Load Flow
    Idema, Reijer
    Lahaye, Domenico
    Vuik, Kees
    van der Sluis, Lou
    2010 IEEE PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION: SMART SOLUTIONS FOR A CHANGING WORLD, 2010,
  • [43] A FAST NEWTON/LMS ALGORITHM
    KIM, TS
    KIM, SD
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1994, E77A (07) : 1154 - 1156
  • [44] Separation of variables and Backlund transformations for the symmetric Lagrange top
    Kuznetsov, VB
    Petrera, M
    Ragnisco, O
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (35): : 8495 - 8512
  • [45] Attraction of Newton method to critical Lagrange multipliers: fully quadratic case
    A. F. Izmailov
    E. I. Uskov
    Mathematical Programming, 2015, 152 : 33 - 73
  • [47] Attraction of Newton method to critical Lagrange multipliers: fully quadratic case
    Izmailov, A. F.
    Uskov, E. I.
    MATHEMATICAL PROGRAMMING, 2015, 152 (1-2) : 33 - 73
  • [48] 关于Newton力学和Lagrange力学的守恒量
    薛纭
    力学与实践, 2012, 34 (01) : 94 - 96
  • [49] FAST LAGRANGE INVERSION, WITH AN APPLICATION TO FACTORIAL NUMBERS
    NIEDERHAUSEN, H
    DISCRETE MATHEMATICS, 1992, 104 (01) : 99 - 110
  • [50] FAST NEWTON ACTIVE APPEARANCE MODELS
    Kossaifi, Jean
    Tzimiropoulos, Georgios
    Pantic, Maja
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1420 - 1424