Fast Lagrange-Newton transformations

被引:3
|
作者
Smarzewski, Ryszard [1 ]
Kapusta, Joanna [1 ]
机构
[1] John Paul II Catholic Univ Lublin, Dept Math & Comp Sci, PL-20708 Lublin, Poland
关键词
fast algorithms; Lagrange-Newton transformation; special configurations of knots; threshold secret sharing scheme; computational complexity;
D O I
10.1016/j.jco.2006.12.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we present explicit vector formulae for the Lagrange-Newton transformation L: K-n -> K-n and its inverse L-1 with respect to interpolating knots x(i) = alpha x(i-1) + beta (i = 1, 2,.... n - 1 : x(0) = gamma). where alpha not equal 0, beta, gamma belong to a field K. These formulae depend on the wrapped convolution, Horner transformation, iterative product and coordinatewise vector operations. All these transformations and operations, except of O (n log n)-wrapped convolution, have running time of O(n) base operations from the field K. Moreover. we give an application of these fast interpolating transformations to threshold secret sharing schemes in cryptography. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:336 / 345
页数:10
相关论文
共 50 条
  • [1] A Lagrange-Newton algorithm for sparse nonlinear programming
    Zhao, Chen
    Xiu, Naihua
    Qi, Houduo
    Luo, Ziyan
    MATHEMATICAL PROGRAMMING, 2022, 195 (1-2) : 903 - 928
  • [2] The formulae and algorithms for Lagrange-power basis transformation and Lagrange-Newton transformation
    Lu, Dian-jun
    Lii, Keh-Shin
    Wang, Yu
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (10) : 5861 - 5866
  • [3] On a Lagrange-Newton method for a nonlinear parabolic boundary control problem
    Goldberg, H
    Troltzsch, F
    OPTIMIZATION METHODS & SOFTWARE, 1998, 8 (3-4): : 225 - 247
  • [4] On a Lagrange-Newton method for a nonlinear parabolic boundary control problem
    Technical Univ of Chemnitz-Zwickau, Chemnitz, Germany
    Optimization Methods and Software, 1998, 8 (3-4): : 225 - 247
  • [5] AN INEXACT LAGRANGE-NEWTON METHOD FOR STOCHASTIC QUADRATIC PROGRAMS WITH RECOURSE
    Zhou Changyin He GuopingDept.of Math.
    Applied Mathematics:A Journal of Chinese Universities, 2004, (02) : 229 - 238
  • [6] Towards a Lagrange-Newton Approach for PDE Constrained Shape Optimization
    Schulz, Volker H.
    Siebenborn, Martin
    Welker, Kathrin
    NEW TRENDS IN SHAPE OPTIMIZATION, 2015, 166 : 229 - 249
  • [7] A Lagrange-Newton algorithm for tensor sparse principal component analysis
    Li, Shuai
    Luo, Ziyan
    Chen, Yang
    OPTIMIZATION, 2024, 73 (09) : 2933 - 2951
  • [8] THE LAGRANGE-NEWTON METHOD FOR INFINITE-DIMENSIONAL OPTIMIZATION PROBLEMS
    ALT, W
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1990, 11 (3-4) : 201 - 224
  • [9] An inexact lagrange-newton method for stochastic quadratic programs with recourse
    Changyin Z.
    Guoping H.
    Applied Mathematics-A Journal of Chinese Universities, 2004, 19 (2) : 229 - 238
  • [10] A Lagrange-Newton Method for EIT/UT Dual-Modality Image Reconstruction
    Liang, Guanghui
    Ren, Shangjie
    Zhao, Shu
    Dong, Feng
    SENSORS, 2019, 19 (09)