Non-linear process monitoring using kernel principal component analysis: A review of the basic and modified techniques with industrial applications

被引:18
|
作者
Pani, Ajaya Kumar [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Chem Engn, Pilani 333031, Rajasthan, India
关键词
Non-linear process monitoring; Fault detection; Kernel PCA; Non-linear system; Unsupervised technique; Gaussian kernel; FAULT-DETECTION METHOD; REDUCED COMPLEXITY; KPCA; PCA; IDENTIFICATION; DIAGNOSIS;
D O I
10.1007/s43153-021-00125-2
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Timely detection and diagnosis of process abnormality in industries is crucial for minimizing downtime and maximizing profit. Among various process monitoring and fault detection techniques, principal component analysis (PCA) and its different variants are probably the ones with maximum applications. Because of the linearity constraint of the conventional PCA, some non-linear variants of PCA have been proposed. Among different non-linear variants of PCA, the kernel PCA (KPCA) has gained maximum attention in the field of industrial fault detection. This article revisits the basic KPCA algorithm along with different limitations of KPCA and the crucial open issues in design of KPCA based monitoring system. Different modifications proposed by different researchers are reviewed. Strategies adopted by various researchers for optimal selection of kernel parameter and number of principal components are also presented.
引用
收藏
页码:327 / 344
页数:18
相关论文
共 50 条
  • [21] Process monitoring using principal component analysis and stacked autoencoder for linear and nonlinear coexisting industrial processes
    Li, Jiangsheng
    Yan, Xuefeng
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2020, 112 : 322 - 329
  • [22] On-line batch process monitoring using batch dynamic kernel principal component analysis
    Jia, Mingxing
    Chu, Fei
    Wang, Fuli
    Wang, Wei
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2010, 101 (02) : 110 - 122
  • [23] Monitoring a Reverse Osmosis Process with Kernel Principal Component Analysis: A Preliminary Approach
    Quatrini, Elena
    Costantino, Francesco
    Mba, David
    Li, Xiaochuan
    Gan, Tat-Hean
    APPLIED SCIENCES-BASEL, 2021, 11 (14):
  • [24] Kernel principal component analysis with reduced complexity for nonlinear dynamic process monitoring
    Ines Jaffel
    Okba Taouali
    Mohamed Faouzi Harkat
    Hassani Messaoud
    The International Journal of Advanced Manufacturing Technology, 2017, 88 : 3265 - 3279
  • [25] Industrial Process Fault Detection Using Singular Spectrum Analysis and Kernel Principal Component Analysis
    Krishnannair, Syamala
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 871 - 875
  • [26] Detection and quantification of non-linear structural behavior using principal component analysis
    Hot, A.
    Kerschen, G.
    Foltete, E.
    Cogan, S.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2012, 26 : 104 - 116
  • [27] Industrial process monitoring using nonlinear principal component models
    Antory, D
    Kruger, U
    Irwin, GW
    McCullough, G
    2004 2ND INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2004, : 293 - 298
  • [28] Fault monitoring using novel adaptive kernel principal component analysis integrating grey relational analysis
    Han, Yongming
    Song, Guangliang
    Liu, Fenfen
    Geng, Zhiqiang
    Ma, Bo
    Xu, Wei
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 157 : 397 - 410
  • [29] Nonlinear Batch Process Monitoring Using Phase-Based Kernel-Independent Component Analysis-Principal Component Analysis (KICA-PCA)
    Zhao, Chunhui
    Gao, Furong
    Wang, Fuli
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (20) : 9163 - 9174
  • [30] Adaptive kernel principal component analysis for nonlinear dynamic process monitoring
    Chouaib, Chakour
    Mohamed-Faouzi, Harkat
    Messaoud, Djeghaba
    2013 9TH ASIAN CONTROL CONFERENCE (ASCC), 2013,