Estimation of forest fuel load from radar remote sensing

被引:155
作者
Saatchi, Sassan
Halligan, Kerry
Despain, Don G.
Crabtree, Robert L.
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA
[3] Yellowstone Ecol Res Ctr, Bozeman, MT 59718 USA
[4] US Geol Survey, Bozeman, MT 59717 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2007年 / 45卷 / 06期
基金
美国国家航空航天局;
关键词
canopy bulk density; canopy fuel; forest biomass; polarimetric synthetic aperture radar (SAR); radar; wildfire; Yellowstone National Park (YNP);
D O I
10.1109/TGRS.2006.887002
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar (SAR) imagery acquired over a large area of the Yellowstone National Park by the Airborne SAR sensor to estimate the distribution of forest biomass and canopy fuel loads. Semiempirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, namely: 1) canopy fuel weight; 2) canopy bulk density; and 3) foliage moisture content. These estimates, when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy and, when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar-generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R-2 = 85 for the canopy fuel weight, R-2 = 0.84 for canopy bulk density, and R-2 = 0.78 for the foliage biomass.
引用
收藏
页码:1726 / 1740
页数:15
相关论文
共 38 条
  • [1] Assessment of forest fire danger conditions in southern Spain from NOAA images and meteorological indices
    Aguado, I
    Chuvieco, E
    Martín, P
    Salas, J
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (08) : 1653 - 1668
  • [2] Estimating forest canopy fuel parameters using LIDAR data
    Andersen, HE
    McGaughey, RJ
    Reutebuch, SE
    [J]. REMOTE SENSING OF ENVIRONMENT, 2005, 94 (04) : 441 - 449
  • [3] ANDREAE MO, 1991, GLOBAL BIOMASS BURNING, P3
  • [4] Multitemporal repeat-pass SAR interferometry of boreal forests
    Askne, J
    Santoro, M
    Smith, G
    Fransson, JES
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (07): : 1540 - 1550
  • [5] Characterizing interannual variations in global fire calendar using data from Earth observing satellites
    Carmona-Moreno, C
    Belward, A
    Malingreau, JP
    Hartley, A
    Garcia-Alegre, M
    Antonovskiy, M
    Buchshtaber, V
    Pivovarov, V
    [J]. GLOBAL CHANGE BIOLOGY, 2005, 11 (09) : 1537 - 1555
  • [6] Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data:: applications in fire danger assessment
    Chuvieco, E
    Riaño, D
    Aguado, I
    Cocero, D
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (11) : 2145 - 2162
  • [8] A remote sensing and GIS-based model of habitats and biodiversity in the Greater Yellowstone Ecosystem
    Debinski, DM
    Kindscher, K
    Jakubauskas, ME
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (17) : 3281 - 3291
  • [9] Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks
    Del Frate, F
    Ferrazzoli, P
    Schiavon, G
    [J]. REMOTE SENSING OF ENVIRONMENT, 2003, 84 (02) : 174 - 183
  • [10] Use of normalized difference water index for monitoring live fuel moisture
    Dennison, PE
    Roberts, DA
    Peterson, SH
    Rechel, J
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (05) : 1035 - 1042