Freely generated vertex algebras and non-linear Lie conformal algebras

被引:25
作者
De Sole, A
Kac, VG
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00220-004-1245-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the notion of a non-linear Lie conformal superalgebra and prove a PBW theorem for its universal enveloping vertex algebra. We also show that conversely any graded freely generated vertex algebra is the universal enveloping algebra of a unique, up to isomorphism, non-linear Lie conformal superalgebra. This correspondence will be applied in the subsequent work to the problem of classification of finitely generated simple graded vertex algebras.
引用
收藏
页码:659 / 694
页数:36
相关论文
共 20 条
[1]  
Bakalov B, 2003, INT MATH RES NOTICES, V2003, P123
[3]  
D'Andrea A., 1998, SEL MATH-NEW SER, V4, P377, DOI DOI 10.1007/s000290050036
[4]   THE RELATION BETWEEN QUANTUM W-ALGEBRAS AND LIE-ALGEBRAS [J].
DEBOER, J ;
TJIN, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (02) :317-332
[5]  
DESOLE A, 2003, THESIS MIT
[6]  
Dong C., 1993, PROGR MATH, V112
[7]   Classification of finite simple Lie conformal superalgebras [J].
Fattori, D ;
Kac, VG .
JOURNAL OF ALGEBRA, 2002, 258 (01) :23-59
[8]   QUANTIZATION OF THE DRINFELD-SOKOLOV REDUCTION [J].
FEIGIN, B ;
FRENKEL, E .
PHYSICS LETTERS B, 1990, 246 (1-2) :75-81
[9]  
FRENKEL I, 1993, J MEMOIRS AM MATH SO, V104
[10]  
Frenkel I., 1988, Pure and Applied Mathematics