CMOS-Compatible Controlled Hyperdoping of Silicon Nanowires

被引:13
作者
Berencen, Yonder [1 ]
Prucnal, Slawomir [1 ]
Moeller, Wolfhard [1 ]
Huebner, Rene [1 ]
Rebohle, Lars [1 ]
Boettger, Roman [1 ]
Glaser, Markus [2 ]
Schoenherr, Tommy [1 ]
Yuan, Ye [1 ]
Wang, Mao [1 ]
Georgiev, Yordan M. [1 ]
Erbe, Artur [1 ]
Lugstein, Alois [2 ]
Helm, Manfred [1 ,3 ]
Zhou, Shengqiang [1 ]
Skorupa, Wolfgang [1 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] Vienna Univ Technol, Inst Solid State Elect, Floragasse 7, A-1040 Vienna, Austria
[3] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
关键词
flash lamp annealing; hyperdoping; intermediate band; ion implantation; nanowires;
D O I
10.1002/admi.201800101
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hyperdoping consists of the intentional introduction of deep-level dopants into a semiconductor in excess of equilibrium concentrations. This causes a broadening of dopant energy levels into an intermediate band between the valence and the conduction bands. Recently, bulk Si hyperdoped with chalcogens or transition metals is demonstrated to be an appropriate intermediate-band material for Si-based short-wavelength infrared photodetectors. Intermediate-band nanowires can potentially be used instead of bulk materials to overcome the Shockley-Queisser limit and to improve efficiency in solar cells, but fundamental scientific questions in hyperdoping Si nanowires require experimental verification. The development of a method for obtaining controlled hyperdoping levels at the nanoscale concomitant with the electrical activation of dopants is, therefore, vital to understanding these issues. Here, this paper shows a complementary metal-oxide-semiconductor (CMOS)-compatible technique based on nonequilibrium processing for the controlled doping of Si at the nanoscale with dopant concentrations several orders of magnitude greater than the equilibrium solid solubility. Through the nanoscale spatially controlled implantation of dopants, and a bottom-up template-assisted solid phase recrystallization of the nanowires with the use of millisecond-flash lamp annealing, Se-hyperdoped Si/SiO2 core/shell nanowires are formed that have a room-temperature sub-bandgap optoelectronic photoresponse when configured as a photoconductor device.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Core-shell silicon nanowire solar cells [J].
Adachi, M. M. ;
Anantram, M. P. ;
Karim, K. S. .
SCIENTIFIC REPORTS, 2013, 3
[2]   The promise and challenge of nanostructured solar cells [J].
Beard, Matthew C. ;
Luther, Joseph M. ;
Nozik, Arthur J. .
NATURE NANOTECHNOLOGY, 2014, 9 (12) :951-954
[3]   Room-temperature short-wavelength infrared Si photodetector [J].
Berencen, Yonder ;
Prucnal, Slawomir ;
Liu, Fang ;
Skorupa, Ilona ;
Huebner, Rene ;
Rebohle, Lars ;
Zhou, Shengqiang ;
Schneider, Harald ;
Helm, Manfred ;
Skorupa, Wolfgang .
SCIENTIFIC REPORTS, 2017, 7
[4]  
Chadderton L. T., 1971, Radiation Effects, V8, P77, DOI 10.1080/00337577108231012
[5]   High-Efficiency Silicon Nanocrystal Light-Emitting Devices [J].
Cheng, Kai-Yuan ;
Anthony, Rebecca ;
Kortshagen, Uwe R. ;
Holmes, Russell J. .
NANO LETTERS, 2011, 11 (05) :1952-1956
[6]   Ion beam doping of silicon nanowires [J].
Colli, Alan ;
Fasoli, Andrea ;
Ronning, Carsten ;
Pisana, Simone ;
Piscanec, Stefano ;
Ferrari, Andrea C. .
NANO LETTERS, 2008, 8 (08) :2188-2193
[7]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[8]   Doping and electrical transport in silicon nanowires [J].
Cui, Y ;
Duan, XF ;
Hu, JT ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22) :5213-5216
[9]   SOME OBSERVATIONS ON THE AMORPHOUS TO CRYSTALLINE TRANSFORMATION IN SILICON [J].
DROSD, R ;
WASHBURN, J .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (01) :397-403
[10]   Solid phase epitaxy versus random nucleation and growth in sub-20 nm wide fin field-effect transistors [J].
Duffy, R. ;
Van Dal, M. J. H. ;
Pawlak, B. J. ;
Kaiser, M. ;
Weemaes, R. G. R. ;
Degroote, B. ;
Kunnen, E. ;
Altamirano, E. .
APPLIED PHYSICS LETTERS, 2007, 90 (24)