CMOS-Compatible Controlled Hyperdoping of Silicon Nanowires

被引:13
作者
Berencen, Yonder [1 ]
Prucnal, Slawomir [1 ]
Moeller, Wolfhard [1 ]
Huebner, Rene [1 ]
Rebohle, Lars [1 ]
Boettger, Roman [1 ]
Glaser, Markus [2 ]
Schoenherr, Tommy [1 ]
Yuan, Ye [1 ]
Wang, Mao [1 ]
Georgiev, Yordan M. [1 ]
Erbe, Artur [1 ]
Lugstein, Alois [2 ]
Helm, Manfred [1 ,3 ]
Zhou, Shengqiang [1 ]
Skorupa, Wolfgang [1 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] Vienna Univ Technol, Inst Solid State Elect, Floragasse 7, A-1040 Vienna, Austria
[3] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
来源
ADVANCED MATERIALS INTERFACES | 2018年 / 5卷 / 11期
关键词
flash lamp annealing; hyperdoping; intermediate band; ion implantation; nanowires;
D O I
10.1002/admi.201800101
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hyperdoping consists of the intentional introduction of deep-level dopants into a semiconductor in excess of equilibrium concentrations. This causes a broadening of dopant energy levels into an intermediate band between the valence and the conduction bands. Recently, bulk Si hyperdoped with chalcogens or transition metals is demonstrated to be an appropriate intermediate-band material for Si-based short-wavelength infrared photodetectors. Intermediate-band nanowires can potentially be used instead of bulk materials to overcome the Shockley-Queisser limit and to improve efficiency in solar cells, but fundamental scientific questions in hyperdoping Si nanowires require experimental verification. The development of a method for obtaining controlled hyperdoping levels at the nanoscale concomitant with the electrical activation of dopants is, therefore, vital to understanding these issues. Here, this paper shows a complementary metal-oxide-semiconductor (CMOS)-compatible technique based on nonequilibrium processing for the controlled doping of Si at the nanoscale with dopant concentrations several orders of magnitude greater than the equilibrium solid solubility. Through the nanoscale spatially controlled implantation of dopants, and a bottom-up template-assisted solid phase recrystallization of the nanowires with the use of millisecond-flash lamp annealing, Se-hyperdoped Si/SiO2 core/shell nanowires are formed that have a room-temperature sub-bandgap optoelectronic photoresponse when configured as a photoconductor device.
引用
收藏
页数:8
相关论文
共 38 条
  • [1] Core-shell silicon nanowire solar cells
    Adachi, M. M.
    Anantram, M. P.
    Karim, K. S.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [2] The promise and challenge of nanostructured solar cells
    Beard, Matthew C.
    Luther, Joseph M.
    Nozik, Arthur J.
    [J]. NATURE NANOTECHNOLOGY, 2014, 9 (12) : 951 - 954
  • [3] Room-temperature short-wavelength infrared Si photodetector
    Berencen, Yonder
    Prucnal, Slawomir
    Liu, Fang
    Skorupa, Ilona
    Huebner, Rene
    Rebohle, Lars
    Zhou, Shengqiang
    Schneider, Harald
    Helm, Manfred
    Skorupa, Wolfgang
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [4] Chadderton L. T., 1971, Radiation Effects, V8, P77, DOI 10.1080/00337577108231012
  • [5] High-Efficiency Silicon Nanocrystal Light-Emitting Devices
    Cheng, Kai-Yuan
    Anthony, Rebecca
    Kortshagen, Uwe R.
    Holmes, Russell J.
    [J]. NANO LETTERS, 2011, 11 (05) : 1952 - 1956
  • [6] Ion beam doping of silicon nanowires
    Colli, Alan
    Fasoli, Andrea
    Ronning, Carsten
    Pisana, Simone
    Piscanec, Stefano
    Ferrari, Andrea C.
    [J]. NANO LETTERS, 2008, 8 (08) : 2188 - 2193
  • [7] Functional nanoscale electronic devices assembled using silicon nanowire building blocks
    Cui, Y
    Lieber, CM
    [J]. SCIENCE, 2001, 291 (5505) : 851 - 853
  • [8] Doping and electrical transport in silicon nanowires
    Cui, Y
    Duan, XF
    Hu, JT
    Lieber, CM
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22): : 5213 - 5216
  • [9] SOME OBSERVATIONS ON THE AMORPHOUS TO CRYSTALLINE TRANSFORMATION IN SILICON
    DROSD, R
    WASHBURN, J
    [J]. JOURNAL OF APPLIED PHYSICS, 1982, 53 (01) : 397 - 403
  • [10] Solid phase epitaxy versus random nucleation and growth in sub-20 nm wide fin field-effect transistors
    Duffy, R.
    Van Dal, M. J. H.
    Pawlak, B. J.
    Kaiser, M.
    Weemaes, R. G. R.
    Degroote, B.
    Kunnen, E.
    Altamirano, E.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (24)