A statistical algorithm for detecting cognitive plateaus in Alzheimer's disease

被引:0
|
作者
An, Hyonggin [1 ]
Little, Roderick J. A. [2 ]
Bozoki, Andrea [3 ]
机构
[1] Korea Univ, Dept Biostat, Seoul 136705, South Korea
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48108 USA
[3] Michigan State Univ, Dept Neurol & Ophthalmol, E Lansing, MI 48824 USA
关键词
Alzheimer's disease; longitudinal data; linear mixed model; nonlinear model; false discovery rate; cognitive plateau; SENILE-DEMENTIA; DECLINE;
D O I
10.1080/02664760902889999
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Repeated neuropsychological measurements, such as mini-mental state examination (MMSE) scores, are frequently used in Alzheimer's disease (AD) research to study change in cognitive function of AD patients. A question of interest among dementia researchers is whether some AD patients exhibit transient oplateauso of cognitive function in the course of the disease. We consider a statistical approach to this question, based on irregularly spaced repeated MMSE scores. We propose an algorithm that formalizes the measurement of an apparent cognitive plateau, and a procedure to evaluate the evidence of plateaus in AD using this algorithm based on applying the algorithm to the observed data and to data sets simulated from a linear mixed model. We apply these methods to repeated MMSE data from the Michigan Alzheimer's Disease Research Center, finding a high rate of apparent plateaus and also a high rate of false discovery. Simulation studies are also conducted to assess the performance of the algorithm. In general, the false discovery rate of the algorithm is high unless the rate of decline is high compared with the measurement error of the cognitive test. It is argued that the results are not a problem of the specific algorithm chosen, but reflect a lack of information concerning the presence of plateaus in the data.
引用
收藏
页码:779 / 789
页数:11
相关论文
共 50 条
  • [21] Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease
    Birkenbihl, Colin
    Cuppels, Madison
    Boyle, Rory T.
    Klinger, Hannah M.
    Langford, Oliver
    Coughlan, Gillian T.
    Properzi, Michael J.
    Chhatwal, Jasmeer
    Price, Julie C.
    Schultz, Aaron P.
    Rentz, Dorene M.
    Amariglio, Rebecca E.
    Johnson, Keith A.
    Gottesman, Rebecca F.
    Mukherjee, Shubhabrata
    Maruff, Paul
    Lim, Yen Ying
    Masters, Colin L.
    Beiser, Alexa
    Resnick, Susan M.
    Hughes, Timothy M.
    Burnham, Samantha
    Tunali, Ilke
    Landau, Susan
    Cohen, Ann D.
    Johnson, Sterling C.
    Betthauser, Tobey J.
    Seshadri, Sudha
    Lockhart, Samuel N.
    O'Bryant, Sid E.
    Vemuri, Prashanthi
    Sperling, Reisa A.
    Hohman, Timothy J.
    Donohue, Michael C.
    Buckley, Rachel F.
    BRAIN INFORMATICS, 2025, 12 (01)
  • [22] Alzheimer's Disease and Parkinson Dementia Distinguished by Cognitive Marker
    Kozlova, Irina
    Parra, Mario A.
    Titova, Nataliya
    Gantman, Maria
    Della Sala, Sergio
    ARCHIVES OF CLINICAL NEUROPSYCHOLOGY, 2021, 36 (03) : 307 - 315
  • [23] Cognitive profiles in persons with depressive disorder and Alzheimer's disease
    Lanza, Claudia
    Sejunaite, Karolina
    Steindel, Charlotte
    Scholz, Ingo
    Riepe, Matthias W.
    BRAIN COMMUNICATIONS, 2020, 2 (02)
  • [24] An examination of Bayesian statistical approaches to modeling change in cognitive decline in an Alzheimer's disease population
    Bartolucci, Al
    Bae, Sejong
    Singh, Karan
    Griffith, H. Randall
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (03) : 561 - 571
  • [25] Mild cognitive impairment and progression to dementia of Alzheimer's disease
    Quintes Steiner, Ana Beatriz
    Jacinto, Alessandro Ferrari
    De Sa Mayoral, Vania Ferreira
    Dozzi Brucki, Sonia Maria
    Citero, Vanessa De Albuquerque
    REVISTA DA ASSOCIACAO MEDICA BRASILEIRA, 2017, 63 (07): : 651 - 655
  • [26] Cognitive reserve, one of the determinants of the progression of Alzheimer's disease
    Albrecht, Pierre
    Perisse, Jeremie
    Sauleau, Erik-Andre A.
    Blanc, Frederic
    GERIATRIE ET PSYCHOLOGIE NEUROPSYCHIATRIE DE VIEILLISSEMENT, 2021, 19 (02): : 229 - 236
  • [27] Plasma Sphingomyelins are Associated with Cognitive Progression in Alzheimer's Disease
    Mielke, Michelle M.
    Haughey, Norman J.
    Bandaru, Veera Venkata Ratnam
    Weinberg, Danielle D.
    Darby, Eveleen
    Zaidi, Noman
    Pavlik, Valory
    Doody, Rachelle S.
    Lyketsos, Constantine G.
    JOURNAL OF ALZHEIMERS DISEASE, 2011, 27 (02) : 259 - 269
  • [28] Cognitive and behavioural predictors of progression rates in Alzheimer's disease
    Buccione, I.
    Perri, R.
    Carlesimo, G. A.
    Fadda, L.
    Serra, L.
    Scalmana, S.
    Caltagirone, C.
    EUROPEAN JOURNAL OF NEUROLOGY, 2007, 14 (04) : 440 - 446
  • [29] Alzheimer's Disease Progression: Factors Influencing Cognitive Decline
    Ferrari, Camilla
    Lombardi, Gemma
    Polito, Cristina
    Lucidi, Giulia
    Bagnoli, Silvia
    Piaceri, Irene
    Nacmias, Benedetta
    Berti, Valentina
    Rizzuto, Debora
    Fratiglioni, Laura
    Sorbi, Sandro
    JOURNAL OF ALZHEIMERS DISEASE, 2018, 61 (02) : 785 - 791
  • [30] Detecting conversion from mild cognitive impairment to Alzheimer's disease using FLAIR MRI biomarkers
    Crystal, Owen
    Maralani, Pejman J.
    Black, Sandra
    Fischer, Corinne
    Moody, Alan R.
    Khademi, April
    NEUROIMAGE-CLINICAL, 2023, 40