A rapid and efficient method for expansion of human mesenchymal stem cells

被引:144
作者
Both, Sanne K.
Van der Muijsenberg, Adrie J. C.
Van Blitterswijk, Clemens A.
De Boer, Jan
De Bruijn, Joost D.
机构
[1] Queen Mary Univ London, Dept Mat, London E1 4NS, England
[2] Univ Twente, Inst Biomed Technol, Bilthoven, Netherlands
来源
TISSUE ENGINEERING | 2007年 / 13卷 / 01期
关键词
D O I
10.1089/ten.2005.0513
中图分类号
Q813 [细胞工程];
学科分类号
摘要
During the past decade, there has been much interest in the use of human mesenchymal stem cells (hMSCs) in bone tissue engineering. HMSCs can be obtained relatively easily and expanded rapidly in culture, but for clinical purposes large numbers are often needed and the cost should be kept to a minimum. A rapid and efficient culturing protocol would therefore be beneficial. In this study, we examined the effect of different medium compositions on the expansion and osteogenic differentiation of bone marrow-derived hMSCs from 19 donors. We also investigated the effect of low seeding density and dexamethasone on both hMSCs expansion and their in vitro and in vivo osteogenic differentiation capacity. HMSCs seeded at a density of 100 cells/cm(2) had a significantly higher growth rate than at 5000 cell/cm(2), which was further improved by the addition of dexamethasone. Expanded hMSCs were characterized in vitro on the basis of positive staining for CD29, CD44, CD105, and CD166. The in vitro osteogenic potential of expanded hMSCs was assessed by flow cytometric staining for alkaline phosphatase. In vivo bone-forming potential of the hMSCs was assessed by seeding the cells in ceramic scaffolds, followed by subcutaneous implantation in nude mice and histopathologic assessment of de novo bone formation after 6-week implantation. Expanded hMSCs from all donors displayed similar osteogenic potential independent of the culture conditions. On the basis of these results we have developed an efficient method to culture hMSCs by seeding the cells at 100 cells/cm(2) in an alpha-minimal essential medium-based medium containing dexamethasone.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 33 条
[1]   A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation [J].
Arinzeh, TL ;
Tran, T ;
Mcalary, J ;
Daculsi, G .
BIOMATERIALS, 2005, 26 (17) :3631-3638
[2]  
Byers RJ, 1999, J PATHOL, V187, P374, DOI 10.1002/(SICI)1096-9896(199902)187:3<374::AID-PATH257>3.0.CO
[3]  
2-V
[4]   DIFFERENTIATION OF HUMAN BONE-MARROW OSTEOGENIC STROMAL CELLS IN VITRO - INDUCTION OF THE OSTEOBLAST PHENOTYPE BY DEXAMETHASONE [J].
CHENG, SL ;
YANG, JW ;
RIFAS, L ;
ZHANG, SF ;
AVIOLI, LV .
ENDOCRINOLOGY, 1994, 134 (01) :277-286
[5]   Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow [J].
Colter, DC ;
Class, R ;
DiGirolamo, CM ;
Prockop, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3213-3218
[6]   Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow [J].
D'Ippolito, G ;
Schiller, PC ;
Ricordi, C ;
Roos, BA ;
Howard, GA .
JOURNAL OF BONE AND MINERAL RESEARCH, 1999, 14 (07) :1115-1122
[7]   Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells [J].
de Boer, J ;
Siddappa, R ;
Gaspar, C ;
van Apeldoorn, A ;
Fodde, R ;
van Blitterswijk, C .
BONE, 2004, 34 (05) :818-826
[8]   Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells [J].
De Boer, J ;
Wang, HJ ;
Van Blitterswijk, C .
TISSUE ENGINEERING, 2004, 10 (3-4) :393-401
[9]  
de Bruijn J D, 1999, Adv Dent Res, V13, P74
[10]   BONE-MARROW OSTEOGENIC STEM-CELLS - INVITRO CULTIVATION AND TRANSPLANTATION IN DIFFUSION-CHAMBERS [J].
FRIEDENSTEIN, AJ ;
CHAILAKHYAN, RK ;
GERASIMOV, UV .
CELL AND TISSUE KINETICS, 1987, 20 (03) :263-272