State Estimation in Contact-Rich Manipulation

被引:0
|
作者
Wirnshofer, Florian [1 ]
Schmidt, Philipp S. [1 ]
Meister, Philine [1 ]
von Wichert, Georg [1 ]
Burgard, Wolfram [2 ]
机构
[1] Siemens Corp Technol, Otto Hahn Ring 6, Munich, Germany
[2] Univ Freiburg, Dept Comp Sci, Freiburg, Germany
来源
2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2019年
关键词
POSE;
D O I
10.1109/icra.2019.8793572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a Bayesian state estimator for contact-rich manipulation tasks with application in non-prehensile manipulation, industrial assembly or in-hand localization. The core idea of our approach is to explicitly model both the contact dynamics and a torque-based robot controller as part of the underlying system model. Our approach is capable of estimating the state of movable objects for various robot kinematics and geometries of robots and objects. This includes complex scenarios with multiple robots, multiple objects and articulated objects. We have validated our approach in simulation and on a physical robot. The experiments show that multi-modal distributions of six degrees of freedom object poses can be accurately tracked in real-time in a complex manipulation scenario.
引用
收藏
页码:3790 / 3796
页数:7
相关论文
共 50 条
  • [21] Hearing Touch: Audio-Visual Pretraining for Contact-Rich Manipulation
    Mejia, Jared
    Dean, Victoria
    Hellebrekers, Tess
    Gupta, Abhinav
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 6912 - 6919
  • [22] CALAMARI: Contact-Aware and Language conditioned spatial Action MApping for contact-RIch manipulation
    Wi, Youngsun
    Van der Merwe, Mark
    Zeng, Andy
    Florence, Pete
    Fazeli, Nima
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [23] Deformation-Aware Contact-Rich Manipulation Skills Learning and Compliant Control
    Si, Weiyong
    Guo, Cheng
    Dong, Jiale
    Lu, Zhenyu
    Yang, Chenguang
    HUMAN-FRIENDLY ROBOTICS, HFR, 2022, 2023, 26 : 90 - 104
  • [24] Data-Efficient Model Learning and Prediction for Contact-Rich Manipulation Tasks
    Khader, Shahbaz Abdul
    Yin, Hang
    Falco, Pietro
    Kragic, Danica
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03): : 4321 - 4328
  • [25] Learning Preconditions of Hybrid Force-Velocity Controllers for Contact-Rich Manipulation
    Liang, Jacky
    Cheng, Xianyi
    Kroemer, Oliver
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 679 - 689
  • [26] Active Admittance Control With Iterative Learning for General-Purpose Contact-Rich Manipulation
    Zhou, Bo
    Sun, Yuyao
    Liu, Wenbo
    Jiao, Ruixuan
    Fang, Fang
    Li, Shihua
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2025, 72 (03) : 2842 - 2851
  • [27] GAM: General affordance-based manipulation for contact-rich object disentangling tasks
    Yang, Xintong
    Wu, Jing
    Lai, Yu-Kun
    Ji, Ze
    NEUROCOMPUTING, 2024, 578
  • [28] A novel human-robot skill transfer method for contact-rich manipulation task
    Dong, Jiale
    Si, Weiyong
    Yang, Chenguang
    ROBOTIC INTELLIGENCE AND AUTOMATION, 2023, 43 (03): : 327 - 337
  • [29] Global Planning for Contact-Rich Manipulation via Local Smoothing of Quasi-Dynamic Contact Models
    Pang, Tao
    Suh, H. J. Terry
    Yang, Lujie
    Tedrake, Russ
    IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (06) : 4691 - 4711
  • [30] MOE-Hair: Toward Soft and Compliant Contact-rich Hair Manipulation and Care
    Yoo, Uksang
    Dennler, Nathaniel
    Mataric, Maja
    Nikolaidis, Stefanos
    Oh, Jean
    Ichnowski, Jeffrey
    COMPANION OF THE 2024 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, HRI 2024 COMPANION, 2024, : 1163 - 1167