Structural Analysis of Semi-specific Oligosaccharide Recognition by a Cellulose-binding Protein of Thermotoga maritima Reveals Adaptations for Functional Diversification of the Oligopeptide Periplasmic Binding Protein Fold

被引:23
作者
Cuneo, Matthew J. [1 ]
Beese, Lorena S. [1 ]
Hellinga, Homme W. [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA
基金
美国能源部; 美国国家卫生研究院;
关键词
CRYSTAL-STRUCTURE; PEPTIDE BINDING; LIGAND-BINDING; TRANSPORT; SEQUENCE; BACTERIA; RECEPTOR; GENE; DISACCHARIDE; DEGRADATION;
D O I
10.1074/jbc.M109.041624
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T. maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of beta(1 -> 4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.
引用
收藏
页码:33217 / 33223
页数:7
相关论文
共 42 条
[1]   IDENTIFICATION OF RIBOSE BINDING-PROTEIN AS RECEPTOR FOR RIBOSE CHEMOTAXIS IN SALMONELLA-TYPHIMURIUM [J].
AKSAMIT, RR ;
KOSHLAND, DE .
BIOCHEMISTRY, 1974, 13 (22) :4473-4478
[2]   Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin [J].
Alderkamp, Anne-Carlijn ;
van Rijssel, Marion ;
Bolhuis, Henk .
FEMS MICROBIOLOGY ECOLOGY, 2007, 59 (01) :108-117
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   Multiple open forms of ribose-binding protein trace the path of its conformational change [J].
Björkman, AJ ;
Mowbray, SL .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 279 (03) :651-664
[5]   Structural genomics: inside a protein structure initiative center [J].
Blow, Nathan .
NATURE METHODS, 2008, 5 (02) :203-206
[6]   Maltose/maltodextrin system of Escherichia coli:: Transport, metabolism, and regulation [J].
Boos, W ;
Shuman, H .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (01) :204-+
[7]   Structure of Haemophilus influenzae Fe+3-binding protein reveals convergent evolution within a superfamily [J].
Bruns, CM ;
Nowalk, AJ ;
Arvai, AS ;
McTigue, MA ;
Vaughan, KG ;
Mietzner, TA ;
McRee, DE .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (11) :919-924
[8]   THE SEQUENCE STATISTICS AND SOLUTION CONFORMATION OF A BARLEY (1-]3, 1-]4)-BETA-D-GLUCAN [J].
BULIGA, GS ;
BRANT, DA ;
FINCHER, GB .
CARBOHYDRATE RESEARCH, 1986, 157 :139-156
[9]   Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima [J].
Chhabra, SR ;
Shockley, KR ;
Conners, SB ;
Scott, KL ;
Wolfinger, RD ;
Kelly, RM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (09) :7540-7552
[10]   STABILITY OF YEAST ISO-1-FERRICYTOCHROME-C AS A FUNCTION OF PH AND TEMPERATURE [J].
COHEN, DS ;
PIELAK, GJ .
PROTEIN SCIENCE, 1994, 3 (08) :1253-1260