Compactness of Alexandrov-Nirenberg Surfaces

被引:5
作者
Han, Qing [1 ,2 ]
Hong, Jiaxing [3 ]
Huang, Genggeng [3 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
DIMENSIONAL RIEMANNIAN-MANIFOLDS; GAUSSIAN CURVATURE; R3;
D O I
10.1002/cpa.21686
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of compact surfaces in R-3 introduced by Alexandrov and generalized by Nirenberg and prove a compactness result under suitable assumptions on induced metrics and Gauss curvatures. (c) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:1706 / 1753
页数:48
相关论文
共 25 条
[1]  
Alexandrov Aleksandr, 1938, RECUEIL MATH MOSCOW, V4, P69
[2]  
[Anonymous], 2011, Courant Lecture Notes in Mathematics
[3]  
Cohn-Vossen S., 1927, Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl., V1927, P125
[4]  
GILBARG D., 2000, Elliptic Partial Differential Equations of Second Order, V2nd
[5]  
GUAN PF, 1994, J DIFFER GEOM, V39, P331
[6]   Local isometric embedding of surfaces with Gauss curvature changing sign stably across a curve [J].
Han, Q .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (01) :79-103
[7]   On the isometric embedding of surfaces with Gauss curvature changing sign cleanly [J].
Han, Q .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (02) :285-295
[8]  
Han Q, 2003, J DIFFER GEOM, V63, P475
[9]  
Han Q., 2006, MATH SURVEYS MONOGRA, V130, DOI [10.1090/surv/130, DOI 10.1090/SURV/130]
[10]  
Han Q, 2008, METHODS APPL ANAL, V15, P197