Bounds on the maximum number of minimum dominating sets

被引:12
作者
Connolly, Samuel [1 ]
Gabor, Zachary [2 ]
Godbole, Anant [3 ]
Kay, Bill [4 ]
Kelly, Thomas [5 ]
机构
[1] Brown Univ, Providence, RI 02912 USA
[2] Haverford Coll, Haverford, PA 19041 USA
[3] E Tennessee State Univ, Johnson City, TN 37614 USA
[4] Emory Univ, Atlanta, GA 30322 USA
[5] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
基金
美国国家科学基金会;
关键词
Dominating sets; Domination number;
D O I
10.1016/j.disc.2015.12.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph with domination number gamma, we find bounds on the maximum number of minimum dominating sets. First, for gamma >= 3, we obtain lower bounds on the number of gamma-sets that do not dominate a graph on n vertices. Then, we show that gamma-fold lexicographic product of the complete graph on n(1/gamma) vertices has domination number gamma and ((n)(gamma)) - O(n(gamma-1/gamma)) dominating sets of size gamma. Finally, we see that a certain random graph has, with high probability, (i) domination number gamma; and (ii) all but o(n(gamma)) of its gamma-sets being dominating. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1537 / 1542
页数:6
相关论文
共 6 条
[1]  
Alon N., 2008, The Probabilistic Method
[2]  
Fomin FV, 2007, LECT NOTES COMPUT SC, V4598, P165
[3]   On Two Techniques of Combining Branching and Treewidth [J].
Fomin, Fedor V. ;
Gaspers, Serge ;
Saurabh, Saket ;
Stepanov, Alexey A. .
ALGORITHMICA, 2009, 54 (02) :181-207
[4]  
Glebov R., 2015, PREPRINT
[5]  
Godbole A, 2014, UTILITAS MATHEMATICA, V94, P269
[6]  
Wieland B., 2001, ELECTRON J COMB, V8, P1