Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring

被引:5
作者
Chakladar, Sujatro [1 ]
Rosin, Samuel [1 ]
Hudgens, Michael G. [1 ]
Halloran, M. Elizabeth [2 ,3 ]
Clemens, John D. [4 ,5 ]
Ali, Mohammad [6 ]
Emch, Michael E. [7 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27515 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[3] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1124 Columbia St, Seattle, WA 98104 USA
[4] Univ Calif Los Angeles, Dept Epidemiol, Los Angeles, CA USA
[5] Int Ctr Diarrhoeal Dis Res Bangladesh Icddr B, Dhaka, Bangladesh
[6] Johns Hopkins Univ, Dept Int Hlth, Baltimore, MD USA
[7] Univ N Carolina, Dept Geog, Chapel Hill, NC 27515 USA
基金
美国国家科学基金会;
关键词
causal inference; interference; right censoring; survival;
D O I
10.1111/biom.13459
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Estimating population-level effects of a vaccine is challenging because there may be interference, that is, the outcome of one individual may depend on the vaccination status of another individual. Partial interference occurs when individuals can be partitioned into groups such that interference occurs only within groups. In the absence of interference, inverse probability weighted (IPW) estimators are commonly used to draw inference about causal effects of an exposure or treatment. Tchetgen Tchetgen and VanderWeele proposed a modified IPW estimator for causal effects in the presence of partial interference. Motivated by a cholera vaccine study in Bangladesh, this paper considers an extension of the Tchetgen Tchetgen and VanderWeele IPW estimator to the setting where the outcome is subject to right censoring using inverse probability of censoring weights (IPCW). Censoring weights are estimated using proportional hazards frailty models. The large sample properties of the IPCW estimators are derived, and simulation studies are presented demonstrating the estimators' performance in finite samples. The methods are then used to analyze data from the cholera vaccine study.
引用
收藏
页码:777 / 788
页数:12
相关论文
共 21 条
  • [1] Herd immunity conferred by killed oral cholera vaccines in Bangladesh: a reanalysis
    Ali, M
    Emch, M
    von Seidlein, L
    Yunus, M
    Sack, DA
    Rao, M
    Holmgren, J
    Clemens, JD
    [J]. LANCET, 2005, 366 (9479) : 44 - 49
  • [2] Optimal Design of Experiments in the Presence of Interference
    Baird, Sarah
    Bohren, J. Aislinn
    McIntosh, Craig
    Ozler, Berk
    [J]. REVIEW OF ECONOMICS AND STATISTICS, 2018, 100 (05) : 844 - 860
  • [3] CAUSAL INFERENCE FROM OBSERVATIONAL STUDIES WITH CLUSTERED INTERFERENCE, WITH APPLICATION TO A CHOLERA VACCINE STUDY
    Barkley, Brian G.
    Hudgens, Michael G.
    Clemens, John D.
    Ali, Mohammad
    Emch, Michael E.
    [J]. ANNALS OF APPLIED STATISTICS, 2020, 14 (03) : 1432 - 1448
  • [4] Toward causal inference with interference
    Hudgens, Michael G.
    Halloran, M. Elizabeth
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 832 - 842
  • [5] On inverse probability-weighted estimators in the presence of interference
    Liu, L.
    Hudgens, M. G.
    Becker-Dreps, S.
    [J]. BIOMETRIKA, 2016, 103 (04) : 829 - 842
  • [6] Doubly robust estimation in observational studies with partial interference
    Liu, Lan
    Hudgens, Michael G.
    Saul, Bradley
    Clemens, John D.
    Ali, Mohammad
    Emch, Michael E.
    [J]. STAT, 2019, 8 (01):
  • [7] Randomization inference with general interference and censoring
    Loh, Wen Wei
    Hudgens, Michael G.
    Clemens, John D.
    Ali, Mohammad
    Emch, Michael E.
    [J]. BIOMETRICS, 2020, 76 (01) : 235 - 245
  • [8] Longini IM, 2002, J INFECT DIS, V186, P246, DOI 10.1086/341206
  • [9] Munda M, 2012, J STAT SOFTW, V51, P1
  • [10] Causal inference with interfering units for cluster and population level treatment allocation programs
    Papadogeorgou, Georgia
    Mealli, Fabrizia
    Zigler, Corwin M.
    [J]. BIOMETRICS, 2019, 75 (03) : 778 - 787