Transcriptomics in predictive toxicology

被引:0
|
作者
Storck, T [1 ]
von Brevern, MC [1 ]
Behrens, CK [1 ]
Scheel, J [1 ]
Bach, A [1 ]
机构
[1] Axaron Biosci AG, D-69120 Heidelberg, Germany
关键词
hepatocytes; hierarchical cluster analysis; in vitro-in vivo correlation; microarray; mode of action; predictive toxicology; rat liver; toxicogenomics; transcription profiling;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Once again, genomics is about to change drug development. Following its major impact on target discovery and assay development, which increased the number of compounds at early stages of the process, genomics is now zeroing in on the prediction of potential toxicological problems of compounds. Toxicogenomics is the analysis of toxicological processes at the transcriptome level of a target organ or cell. By simultaneously monitoring the effect of a compound on the transcription levels of hundreds to thousands of genes, toxicogenomics can provide an enormous amount of data. This data bears information on the way in which compounds act at the molecular level, reaching far beyond the mere conclusion of whether or not a particular toxicological outcome is elicited. By compiling transcription profiles for well-known toxicants, we are beginning to learn how to analyze this novel type of data in the context of mechanistic and predictive toxicology.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 50 条
  • [31] Towards a qAOP framework for predictive toxicology - Linking data to decisions
    Paini, Alicia
    Campia, Ivana
    Cronin, Mark T. D.
    Asturiol, David
    Ceriani, Lidia
    Exner, Thomas E.
    Gao, Wang
    Gomes, Caroline
    Kruisselbrink, Johannes
    Martens, Marvin
    Meek, M. E. Bette
    Pamies, David
    Pletz, Julia
    Scholz, Stefan
    Schuettler, Andreas
    Spinu, Nicoleta
    Villeneuve, Daniel L.
    Wittwehr, Clemens
    Worth, Andrew
    Luijten, Mirjam
    COMPUTATIONAL TOXICOLOGY, 2022, 21
  • [32] Cellular imaging: a key phenotypic screening strategy for predictive toxicology
    Xu, Jinghai J.
    FRONTIERS IN PHARMACOLOGY, 2015, 6
  • [33] Data- and Simulation-Driven Systems for Predictive Toxicology
    Siler, Scott
    Harrill, Alison
    Kadambi, Ananth
    Roter, Alan H.
    INTERNATIONAL JOURNAL OF TOXICOLOGY, 2010, 29 (01) : 129 - 129
  • [34] Human pluripotent stem cells in drug discovery and predictive toxicology
    Laustriat, Delphine
    Gide, Jacqueline
    Peschanski, Marc
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2010, 38 : 1051 - 1057
  • [35] Data quality in predictive toxicology: Reproducibility of rodent carcinogenicity experiments
    Gottmann, E
    Kramer, S
    Pfahringer, B
    Helma, C
    ENVIRONMENTAL HEALTH PERSPECTIVES, 2001, 109 (05) : 509 - 514
  • [36] FutureTox II: In vitro Data and In Silico Models for Predictive Toxicology
    Knudsen, Thomas B.
    Keller, Douglas A.
    Sander, Miriam
    Carney, Edward W.
    Doerrer, Nancy G.
    Eaton, David L.
    Fitzpatrick, Suzanne Compton
    Hastings, Kenneth L.
    Mendrick, Donna L.
    Tice, Raymond R.
    Watkins, Paul B.
    Whelan, Maurice
    TOXICOLOGICAL SCIENCES, 2015, 143 (02) : 256 - 267
  • [37] Challenges and limitations of gene expression profiling in mechanistic and predictive toxicology
    Fielden, MR
    Zacharewski, TR
    TOXICOLOGICAL SCIENCES, 2001, 60 (01) : 6 - 10
  • [38] Consensus recommendations to promote and advance predictive systems toxicology and toxicogenomics
    Waters, Michael
    Yauk, Carole
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2007, 48 (05) : 400 - 403
  • [39] 4th Annual predictive toxicology summit 2012
    Cui, Zhanfeng
    EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2013, 9 (08) : 1061 - 1066
  • [40] The Evolution of Bioinformatics in Toxicology: Advancing Toxicogenomics
    Afshari, Cynthia A.
    Hamadeh, Hisham K.
    Bushel, Pierre R.
    TOXICOLOGICAL SCIENCES, 2011, 120 : S225 - S237