Inhomogeneous random coverings of topological Markov shifts

被引:11
作者
Seuret, Stephane [1 ]
机构
[1] Univ Paris Est, LAMA UMR 8050, UPEMLV, UPEC,CNRS, F-94010 Creteil, France
关键词
MULTIPLICATIVE CHAOS; HAUSDORFF DIMENSION; UBIQUITY; SYSTEMS; CIRCLE; ARCS;
D O I
10.1017/S0305004117000512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let y be an irreducible topological Markov shift, and let mu be a shift-invariant Gibbs measure on y. Let (X-n)(n >= 1) be a sequence of i.i.d. random variables with common law mu. In this paper, we focus on the size of the covering of y by the balls B(X-n,n(-s)). This generalises the original Dvoretzky problem by considering random coverings of fractal sets by non-homogeneously distributed balls. We compute the almost sure dimension of lim sup(n ->+infinity) B(X-n, n(-s)) for every s >= 0, which depends on s and the multifractal features of mu. Our results include the inhomogeneous covering of T-d and Sierpinski carpets.
引用
收藏
页码:341 / 357
页数:17
相关论文
共 27 条
[1]  
[Anonymous], 1961, Publ.Math.Inst Hung. Acad. Sci
[2]   Combining multifractal additive and multiplicative chaos [J].
Barral, J ;
Seuret, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (02) :473-497
[3]   Covering numbers of different points in Dvoretzky covering [J].
Barral, J ;
Fan, AH .
BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (04) :275-317
[4]  
Barral J, 2003, Asian J Math, V7, P149
[5]   Heterogeneous ubiquitous systems in Rd and Hausdorff dimension [J].
Barral, Julien ;
Seuret, Stephane .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2007, 38 (03) :467-515
[6]   Ubiquity and large intersections properties under digit frequencies constraints [J].
Barral, Julien ;
Seuret, Stephane .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 :527-548
[7]   ON THE MULTIFRACTAL ANALYSIS OF MEASURES [J].
BROWN, G ;
MICHON, G ;
PEYRIERE, J .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) :775-790
[8]   THE DIMENSION SPECTRUM OF SOME DYNAMIC-SYSTEMS [J].
COLLET, P ;
LEBOWITZ, JL ;
PORZIO, A .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (5-6) :609-644
[9]   LARGE DEVIATIONS FOR MULTIPLICATIVE CHAOS [J].
COLLET, P ;
KOUKIOU, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (02) :329-342
[10]  
DODSON MM, 1995, ANN ACAD SCI FENN A1, V20, P37