Application of the alternating direction method for an inverse monic quadratic eigenvalue problem

被引:11
|
作者
Zhao, Kang [1 ,2 ]
Yao, Guozhu [2 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Comp Sci, Changsha 410114, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Inverse monic quadratic eigenvalue problem; Alternating direction method; Convex programming; Partial eigenstructure; STIFFNESS; SYMMETRY;
D O I
10.1016/j.amc.2014.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper shows that the alternating direction method can be used to solve the inverse monic quadratic eigenvalue problem (IMQEP) with the semidefiniteness and sparsity requirements. The results of numerical examples show that the proposed method works well. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
  • [1] Solutions to an inverse monic quadratic eigenvalue problem
    Yuan, Yongxin
    Dai, Hua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (11) : 2367 - 2381
  • [2] Applications of the alternating direction method of multipliers to the semidefinite inverse quadratic eigenvalue problem with a partial eigenstructure
    Bai, Zhengjian
    Chen, Meixiang
    Yuan, Xiaoming
    INVERSE PROBLEMS, 2013, 29 (07)
  • [4] An alternating direction method of multipliers for the eigenvalue complementarity problem
    Judice, Joaquim J.
    Fukushima, Masao
    Iusem, Alfredo
    Martinez, J. M.
    Sessa, Valentina
    OPTIMIZATION METHODS & SOFTWARE, 2021, 36 (2-3): : 337 - 370
  • [5] On a quadratic inverse eigenvalue problem
    Cai, Yunfeng
    Xu, Shufang
    INVERSE PROBLEMS, 2009, 25 (08)
  • [6] An Alternating Direction Method of Multipliers for Inverse Lithography Problem
    Chen, Junqing
    Liu, Haibo
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2023, 16 (03): : 820 - 846
  • [7] On a class of inverse quadratic eigenvalue problem
    Yuan, Yongxin
    Dai, Hua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 2662 - 2669
  • [8] On Parameterised Quadratic Inverse Eigenvalue Problem
    Xiang, Meiling
    Dai, Hua
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (01) : 185 - 200
  • [9] ON THE INVERSE SYMMETRIC QUADRATIC EIGENVALUE PROBLEM
    Lancaster, Peter
    Zaballa, Ion
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (01) : 254 - 278
  • [10] Solutions to a quadratic inverse eigenvalue problem
    Cai, Yun-Feng
    Kuo, Yuen-Cheng
    Lin, Wen-Wei
    Xu, Shu-Fang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (5-6) : 1590 - 1606