A fast shape transformation using a phase-field model

被引:11
|
作者
Kim, Hyundong [1 ]
Lee, Chaeyoung [1 ]
Yoon, Sungha [2 ]
Choi, Yongho [3 ]
Kim, Junseok [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 02841, South Korea
[2] Ewha Womans Univ, Inst Math Sci, Seoul 03760, South Korea
[3] Daegu Univ, Dept Math & Big Data, Gyongsan 38453, Gyeongsangbuk D, South Korea
基金
新加坡国家研究基金会;
关键词
Stable scheme; Finite difference method; Shape transformation; NEGATIVE POISSONS RATIO; AUXETIC STRUCTURE; CASTING PROCESS; SIMULATION; METAMATERIALS; OPTIMIZATION; DESIGN; DEFORMATION;
D O I
10.1016/j.eml.2022.101633
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We propose a numerical method for a fast shape transformation using a phase-field model. The governing equation is based on the modified Allen-Cahn (AC) equation. We numerically solve the equation by using the operator splitting technique. The alternating direction explicit (ADE) finite difference method is used to reduce the strict temporal step constraint when solving the diffusion term. Therefore, we can use a large temporal step size to simulate a fast shape transformation. The reaction term is solved by the separation of variables, and the fidelity term is solved using the semi implicit scheme with a frozen coefficient. To demonstrate that the proposed method can simulate the fast shape transformation with simple or complex sources and targets, we perform several numerical experiments in the three-dimensional space. The computational experiments demonstrate that the shape transformation is fast and smooth. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Bridging the phase-field and phase-field crystal approaches for anisotropic material systems
    Kundin, J.
    Choudhary, M. A.
    Emmerich, H.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (03) : 363 - 372
  • [42] Quantitative isothermal phase-field simulations of peritectic phase transformation in Fe-Mn system
    Alves, Celso Luiz Moraes
    Rezende, Joao Luiz Lopes
    Senk, Dieter
    Kundin, Julia
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2016, 5 (01): : 84 - 91
  • [43] Interface stress evolution of martensitic transformation in MnCu alloys: A phase-field study
    Cui, Shushan
    Wan, Jianfeng
    Zuo, Xunwei
    Chen, Nailu
    Rong, Yonghua
    MATERIALS & DESIGN, 2016, 109 : 88 - 97
  • [44] Finite element analysis of FGM dental crowns using phase-field approach
    Sait, Ferit
    Saeidi, Nazanin
    Korkmaz, Turan
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2023, 138
  • [45] Decoupled, energy stable schemes for a phase-field surfactant model
    Zhu, Guangpu
    Kou, Jisheng
    Sun, Shuyu
    Yao, Jun
    Li, Aifen
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 233 : 67 - 77
  • [46] Phase-field Model for the Pinchoff of Liquid-liquid Jets
    Kim, Chang-Hun
    Shin, Seung-Ho
    Lee, Hyun Geun
    Kim, Junseok
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 55 (04) : 1451 - 1460
  • [47] Numerical Approximation of a Phase-Field Surfactant Model with Fluid Flow
    Zhu, Guangpu
    Kou, Jisheng
    Sun, Shuyu
    Yao, Jun
    Li, Aifen
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 223 - 247
  • [48] Towards a Physically Consistent Phase-Field Model for Alloy Solidification
    Bollada, Peter C.
    Jimack, Peter K.
    Mullis, Andrew M.
    METALS, 2022, 12 (02)
  • [49] DDFT calibration and investigation of an anisotropic phase-field crystal model
    Choudhary, Muhammad Ajmal
    Li, Daming
    Emmerich, Heike
    Loewen, Hartmut
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (26)
  • [50] Phase-field model of isothermal solidification with multiple grain growth
    Feng, Li
    Wang, Zhi-Ping
    Zhu, Chang-Sheng
    Lu, Yang
    CHINESE PHYSICS B, 2009, 18 (05) : 1985 - 1990