Minimax optimal control of stochastic uncertain systems with relative entropy constraints

被引:193
作者
Petersen, IR [1 ]
James, MR
Dupuis, P
机构
[1] Australian Def Force Acad, Dept Elect Engn, Campbell, ACT 2000, Australia
[2] Australian Natl Univ, Fac Engn & Informat Technol, Dept Engn, Canberra, ACT 0200, Australia
[3] Brown Univ, Div Appl Math, LCDS, Providence, RI 02912 USA
基金
澳大利亚研究理事会;
关键词
H-infinity control; minimax control; output feedback; robustness; stochastic optimal control; uncertain systems;
D O I
10.1109/9.847720
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers a new class of discrete time stochastic uncertain systems in which the uncertainty is described by a constraint on the relative entropy between a nominal noise distribution and the perturbed noise distribution. This uncertainty description is a natural extension to the case of stochastic uncertain systems, of the sum quadratic constraint uncertainty description. This paper solves problems of worst-case robust performance analysis and output feedback minimax optimal controller synthesis in a general nonlinear setting. Specializing these results to the linear case leads to a minimax linear quadratic Gaussian (LQG) optimal controller. This controller is defined by Riccati difference equations and a Kalman filter-like state equation. The paper also shows that the minimax LQG problem will have a solution if and only if a corresponding H-infinity control problem has a solution. A linear example is presented to illustrate the minimax LQG methodology.
引用
收藏
页码:398 / 412
页数:15
相关论文
共 31 条
[1]  
Anderson B.D., 2007, Optimal control
[2]  
BASAR T, 1991, HINFINITY OPTIMAL CO
[3]  
Campi MC, 1996, INT J ROBUST NONLIN, V6, P1, DOI 10.1002/(SICI)1099-1239(199601)6:1<1::AID-RNC128>3.0.CO
[4]  
2-3
[5]  
Collings I. B., 1996, Journal of Mathematical Systems Estimation and Control, V6, P1
[6]   MIXED H2 AND H-INFINITY PERFORMANCE-OBJECTIVES .2. OPTIMAL-CONTROL [J].
DOYLE, J ;
ZHOU, KM ;
GLOVER, K ;
BODENHEIMER, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (08) :1575-1587
[7]   ANALYSIS OF FEEDBACK-SYSTEMS WITH STRUCTURED UNCERTAINTIES [J].
DOYLE, J .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1982, 129 (06) :242-250
[8]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[9]  
DOYLE JC, IEEE T AUTOMAT CONTR, V23
[10]  
DUPUIS P., 2011, A Weak Convergence Approach to the Theory of Large Deviations