Nonsmooth convex optimization for structured illumination microscopy image reconstruction

被引:16
作者
Boulanger, Jerome [1 ,2 ,3 ]
Pustelnik, Nelly [4 ,5 ]
Condat, Laurent [6 ]
Sengmanivong, Lucie [1 ,2 ,7 ,8 ]
Piolot, Tristan [9 ,10 ]
机构
[1] CNRS UMR144, F-75248 Paris, France
[2] Inst Curie, F-75248 Paris, France
[3] MRC Lab Mol Biol, Cell Biol Div, Cambridge CB2 0QH, England
[4] Lab Phys ENS Lyon, F-69364 Lyon, France
[5] Univ Lyon 1, CNRS UMR5672, F-69364 Lyon, France
[6] Univ Grenoble Alpes, GIPSA Lab, CNRS, F-38000 Grenoble, France
[7] Cell & Tissue Imaging Core Facil PICT IBiSA, F-75248 Paris, France
[8] CNRS, Inst Curie, Nikon Imaging Ctr, F-75248 Paris, France
[9] CNRS UMR3215, F-75248 Paris, France
[10] INSERM U934, F-75248 Paris, France
关键词
image processing; microscopy; regularization; optimization; LATERAL RESOLUTION; ALGORITHM; REGULARIZATION;
D O I
10.1088/1361-6420/aaccca
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new approach for structured illumination microscopy image reconstruction. We first introduce the principles of this imaging modality and describe the forward model. We then propose the minimization of nonsmooth convex objective functions for the recovery of the unknown image. In this context, we investigate two data-fitting terms for Poisson-Gaussian noise and introduce a new patch-based regularization method. This approach is tested against other regularization approaches on a realistic benchmark. Finally, we perform some test experiments on images acquired on two different microscopes.
引用
收藏
页数:22
相关论文
共 48 条
[41]   Bayesian Estimation for Optimized Structured Illumination Microscopy [J].
Orieux, Francois ;
Sepulveda, Eduardo ;
Loriette, Vincent ;
Dubertret, Benoit ;
Olivo-Marin, Jean-Christophe .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (02) :601-614
[42]  
Peyre G, 2008, LECT NOTES COMPUT SC, V5304, P57, DOI 10.1007/978-3-540-88690-7_5
[43]   NON-LOCAL REGULARIZATION OF INVERSE PROBLEMS [J].
Peyre, Gabriel ;
Bougleux, Sebastien ;
Cohen, Laurent .
INVERSE PROBLEMS AND IMAGING, 2011, 5 (02) :511-530
[44]   NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS [J].
RUDIN, LI ;
OSHER, S ;
FATEMI, E .
PHYSICA D, 1992, 60 (1-4) :259-268
[45]   Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach [J].
Schaefer, LH ;
Schuster, D ;
Schaffer, J .
JOURNAL OF MICROSCOPY, 2004, 216 :165-174
[46]   A guide to super-resolution fluorescence microscopy [J].
Schermelleh, Lothar ;
Heintzmann, Rainer ;
Leonhardt, Heinrich .
JOURNAL OF CELL BIOLOGY, 2010, 190 (02) :165-175
[47]   A joint Richardson-Lucy deconvolution algorithm for the reconstruction of multifocal structured illumination microscopy data [J].
Stroehl, Florian ;
Kaminski, Clemens F. .
METHODS AND APPLICATIONS IN FLUORESCENCE, 2015, 3 (01)
[48]  
York AG, 2012, NAT METHODS, V9, P749, DOI [10.1038/NMETH.2025, 10.1038/nmeth.2025]