Nonsmooth convex optimization for structured illumination microscopy image reconstruction

被引:15
作者
Boulanger, Jerome [1 ,2 ,3 ]
Pustelnik, Nelly [4 ,5 ]
Condat, Laurent [6 ]
Sengmanivong, Lucie [1 ,2 ,7 ,8 ]
Piolot, Tristan [9 ,10 ]
机构
[1] CNRS UMR144, F-75248 Paris, France
[2] Inst Curie, F-75248 Paris, France
[3] MRC Lab Mol Biol, Cell Biol Div, Cambridge CB2 0QH, England
[4] Lab Phys ENS Lyon, F-69364 Lyon, France
[5] Univ Lyon 1, CNRS UMR5672, F-69364 Lyon, France
[6] Univ Grenoble Alpes, GIPSA Lab, CNRS, F-38000 Grenoble, France
[7] Cell & Tissue Imaging Core Facil PICT IBiSA, F-75248 Paris, France
[8] CNRS, Inst Curie, Nikon Imaging Ctr, F-75248 Paris, France
[9] CNRS UMR3215, F-75248 Paris, France
[10] INSERM U934, F-75248 Paris, France
关键词
image processing; microscopy; regularization; optimization; LATERAL RESOLUTION; ALGORITHM; REGULARIZATION;
D O I
10.1088/1361-6420/aaccca
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new approach for structured illumination microscopy image reconstruction. We first introduce the principles of this imaging modality and describe the forward model. We then propose the minimization of nonsmooth convex objective functions for the recovery of the unknown image. In this context, we investigate two data-fitting terms for Poisson-Gaussian noise and introduce a new patch-based regularization method. This approach is tested against other regularization approaches on a realistic benchmark. Finally, we perform some test experiments on images acquired on two different microscopes.
引用
收藏
页数:22
相关论文
共 48 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 1972, PERIOD MATH HUNGAR
[3]  
[Anonymous], 1965, Bull. Soc. Math. France
[4]  
[Anonymous], 1998, Image Processing and Data Analysis
[5]   THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA [J].
ANSCOMBE, FJ .
BIOMETRIKA, 1948, 35 (3-4) :246-254
[6]   A splitting algorithm for dual monotone inclusions involving cocoercive operators [J].
Bang Cong Vu .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (03) :667-681
[7]  
Boulanger J, 2014, I S BIOMED IMAGING, P995, DOI 10.1109/ISBI.2014.6868040
[8]   Patch-Based Nonlocal Functional for Denoising Fluorescence Microscopy Image Sequences [J].
Boulanger, Jerome ;
Kervrann, Charles ;
Bouthemy, Patrick ;
Elbau, Peter ;
Sibarita, Jean-Baptiste ;
Salamero, Jean .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (02) :442-454
[9]  
Burger M, 2016, SCI COMPUT, P345, DOI 10.1007/978-3-319-41589-5_10
[10]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982