AutoText: An End-to-End AutoAI Framework for Text

被引:0
|
作者
Chaudhary, Arunima [1 ]
Issak, Alayt [1 ,2 ,3 ]
Kate, Kiran [1 ]
Katsis, Yannis [1 ]
Valente, Abel [1 ]
Wang, Dakuo [1 ]
Evfimievski, Alexandre [1 ]
Gurajada, Sairam [1 ]
Kawas, Ban [1 ]
Malossi, Cristiano [1 ]
Popa, Lucian [1 ]
Pedapati, Tejaswini [1 ]
Samulowitz, Horst [1 ]
Wistuba, Martin [1 ]
Li, Yunyao [1 ]
机构
[1] IBM Res AI, Armonk, NY 10504 USA
[2] IBM Res, Armonk, NY USA
[3] Coll Wooster, Wooster, OH 44691 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Building models for natural language processing (NLP) tasks remains a daunting task for many, requiring significant technical expertise, efforts, and resources. In this demonstration, we present AutoText, an end-to-end AutoAI framework for text, to lower the barrier of entry in building NLP models. AutoText combines state-of-the-art AutoAI optimization techniques and learning algorithms for NLP tasks into a single extensible framework. Through its simple, yet powerful UI, non-AI experts (e.g., domain experts) can quickly generate performant NLP models with support to both control (e.g., via specifying constraints) and understand learned models.
引用
收藏
页码:16001 / 16003
页数:3
相关论文
共 50 条
  • [21] End-to-End Computer Vision Framework
    Orhei, Ciprian
    Mocofan, Muguras
    Vert, Silviu
    Vasiu, Radu
    2020 14TH INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND TELECOMMUNICATIONS (ISETC), 2020, : 63 - 66
  • [22] An End-to-End Text-independent Speaker Verification Framework with a Keyword Adversarial Network
    Yun, Sungrack
    Cho, Janghoon
    Eum, Jungyun
    Chang, Wonil
    Hwang, Kyuwoong
    INTERSPEECH 2019, 2019, : 2923 - 2927
  • [23] Retargeting Video With an End-to-End Framework
    Le, Thi-Ngoc-Hanh
    Huang, HuiGuang
    Chen, Yi-Ru
    Lee, Tong-Yee
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (09) : 6164 - 6176
  • [24] A Framework for Evaluating the End-to-End Trustworthiness
    Mohammadi, Nazila Gol
    Bandyszak, Torsten
    Weyer, Thorsten
    Kalogiros, Costas
    Kanakakis, Michalis
    2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 1, 2015, : 638 - 645
  • [25] End-to-end Jordanian dialect speech-to-text self-supervised learning framework
    Safieh, Ali A.
    Abu Alhaol, Ibrahim
    Ghnemat, Rawan
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [26] A Text Detection and Recognition System based on an End-to-End Trainable Framework from UAV Imagery
    Wu, Qingtian
    Zhou, Yimin
    Liang, Guoyuan
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2018, : 736 - 741
  • [27] SimulSpeech: End-to-End Simultaneous Speech to Text Translation
    Ren, Yi
    Liu, Jinglin
    Tan, Xu
    Zhang, Chen
    Qin, Tao
    Zhao, Zhou
    Liu, Tie-Yan
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 3787 - 3796
  • [28] Towards End-to-End Speech-to-Text Summarization
    Monteiro, Raul
    Pernes, Diogo
    TEXT, SPEECH, AND DIALOGUE, TSD 2023, 2023, 14102 : 304 - 316
  • [29] End-to-end Speech-to-Punctuated-Text Recognition
    Nozaki, Jumon
    Kawahara, Tatsuya
    Ishizuka, Kenkichi
    Hashimoto, Taiichi
    INTERSPEECH 2022, 2022, : 1811 - 1815
  • [30] A COMPARATIVE STUDY ON END-TO-END SPEECH TO TEXT TRANSLATION
    Bahar, Parnia
    Bieschke, Tobias
    Ney, Hermann
    2019 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU 2019), 2019, : 792 - 799