Hypoxia as a Modulator of Inflammation and Immune Response in Cancer

被引:31
作者
Castillo-Rodriguez, Rosa A. [1 ,2 ]
Trejo-Solis, Cristina [3 ]
Cabrera-Cano, Alfredo [1 ,4 ]
Gomez-Manzo, Saul [5 ]
Davila-Borja, Victor Manuel
机构
[1] Inst Nacl Pediatria, Lab Oncol Expt, Mexico City 04530, DF, Mexico
[2] Consejo Nacl Ciencia Tecnol CONACYT, Programa Invest Invest por Mexico, Mexico City 03940, DF, Mexico
[3] Inst Nacl Neurol Neurocirugia, Lab Expt Enfermedades Neurodegenerat, Mexico City 14269, DF, Mexico
[4] Univ Autonoma Metropolitana Iztapalapa, Div Ciencias Biol Salud, Posgrado Biol Expt, Mexico City 09340, DF, Mexico
[5] Inst Nacl Pediatria, Lab Bioquim Genet, Mexico City 04530, DF, Mexico
关键词
hypoxia; inflammation; cancer; tumoral microenvironment; HIF-1; alpha; NF-kappa B; STAT; NF-KAPPA-B; INDUCIBLE FACTOR-I; EPITHELIAL-MESENCHYMAL TRANSITION; TUMOR-ASSOCIATED MACROPHAGES; RENAL-CELL CARCINOMA; ANTI-VEGF THERAPY; CD8(+) T-CELLS; TRANSCRIPTION FACTOR; SUPPRESSOR-CELLS; PROSTATE-CANCER;
D O I
10.3390/cancers14092291
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-kappa B, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.
引用
收藏
页数:40
相关论文
共 319 条
[41]   Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system [J].
Cho, Sung Hoon ;
Raybuck, Ariel L. ;
Stengel, Kristy ;
Wei, Mei ;
Beck, Thomas C. ;
Volanakis, Emmanuel ;
Thomas, James W. ;
Hiebert, Scott ;
Haase, Volker H. ;
Boothby, Mark R. .
NATURE, 2016, 537 (7619) :234-+
[42]   A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors [J].
Choi, Mi-Ran ;
Stanton-Maxey, Katie J. ;
Stanley, Jennifer K. ;
Levin, Carly S. ;
Bardhan, Rizia ;
Akin, Demir ;
Badve, Sunil ;
Sturgis, Jennifer. ;
Robinson, J. Paul ;
Bashir, Rashid ;
Halas, Naomi J. ;
Clare, Susan E. .
NANO LETTERS, 2007, 7 (12) :3759-3765
[43]   Targeting the HIF2-VEGF axis in renal cell carcinoma [J].
Choueiri, Toni K. ;
Kaelin, William G., Jr. .
NATURE MEDICINE, 2020, 26 (10) :1519-1530
[44]   Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa [J].
Clambey, Eric T. ;
McNamee, Eoin N. ;
Westrich, Joseph A. ;
Glover, Louise E. ;
Campbell, Eric L. ;
Jedlicka, Paul ;
de Zoeten, Edwin F. ;
Cambier, John C. ;
Stenmark, Kurt R. ;
Colgan, Sean P. ;
Eltzschig, Holger K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (41) :E2784-E2793
[45]   Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH) [J].
Cockman, Matthew E. ;
Lancaster, David E. ;
Stolze, Ineke P. ;
Hewitson, Kirsty S. ;
McDonough, Michael A. ;
Coleman, Mathew L. ;
Coles, Charlotte H. ;
Yu, Xiaohong ;
Hay, Ronald T. ;
Ley, Steven C. ;
Pugh, Christopher W. ;
Oldham, Neil J. ;
Masson, Norma ;
Schofield, Christopher J. ;
Ratcliffe, Peter J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (40) :14767-14772
[46]   HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment [J].
Corzo, Cesar A. ;
Condamine, Thomas ;
Lu, Lily ;
Cotter, Matthew J. ;
Youn, Je-In ;
Cheng, Pingyan ;
Cho, Hyun-Il ;
Celis, Esteban ;
Quiceno, David G. ;
Padhya, Tapan ;
McCaffrey, Thomas V. ;
McCaffrey, Judith C. ;
Gabrilovich, Dmitry I. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2010, 207 (11) :2439-2453
[47]   Transforming growth factor beta-induced, an extracellular matrix interacting protein, enhances glycolysis and promotes pancreatic cancer cell migration [J].
Costanza, Brunella ;
Rademaker, Gilles ;
Tiamiou, Assia ;
De Tullio, Pascal ;
Leenders, Justine ;
Blomme, Arnaud ;
Bellier, Justine ;
Bianchi, Elettra ;
Turtoi, Andrei ;
Delvenne, Philippe ;
Bellahcene, Akeila ;
Peulen, Olivier ;
Castronovo, Vincent .
INTERNATIONAL JOURNAL OF CANCER, 2019, 145 (06) :1570-1584
[48]   Targeting tumor-associated macrophages to combat pancreatic cancer [J].
Cui, Ran ;
Yue, Wen ;
Lattime, Edmund C. ;
Stein, Mark N. ;
Xu, Qing ;
Tan, Xiang-Lin .
ONCOTARGET, 2016, 7 (31) :50735-50754
[49]   Mechanism of Hypoxia-Induced NF-κB [J].
Culver, Carolyn ;
Sundqvist, Anders ;
Mudie, Sharon ;
Melvin, Andrew ;
Xirodimas, Dimitris ;
Rocha, Sonia .
MOLECULAR AND CELLULAR BIOLOGY, 2010, 30 (20) :4901-4921
[50]   Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity [J].
Cummins, Eoin P. ;
Berra, Edurne ;
Comerford, Katrina M. ;
Ginouves, Amandine ;
Fitzgerald, Kathleen T. ;
Seeballuck, Fergal ;
Godson, Catherine ;
Nielsen, Jens E. ;
Moynagh, Paul ;
Pouyssegur, Jacques ;
Taylor, Cormac T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (48) :18154-18159