Detection of Motor Impairment in Parkinson's Disease Via Mobile Touchscreen Typing

被引:68
作者
Arroyo-Gallego, Teresa [1 ,2 ,3 ]
Jesus Ledesma-Carbayo, Maria [2 ,3 ]
Sanchez-Ferro, Alvaro [4 ,5 ]
Butterworth, Ian [4 ]
Mendoza, Carlos S. [4 ,6 ]
Matarazzo, Michele [5 ,7 ]
Montero, Paloma [8 ]
Lopez-Blanco, Roberto [7 ]
Puertas-Martin, Veronica [7 ]
Trincado, Rocio [7 ]
Giancardo, Luca [4 ,9 ]
机构
[1] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Politecn Madrid, Biomed Image Technol, Madrid, Spain
[3] CIBER BBN, Madrid, Spain
[4] MIT, Elect Res Lab, Madrid MIT M Vis Consortium, Cambridge, MA 02139 USA
[5] HM Hosp Ctr Integral Neurociencias HM CINAC, Madrid, Spain
[6] Asana Weartech, Madrid, Spain
[7] Inst Invest Hosp 12 Octubre I 12, Madrid, Spain
[8] Hosp Clin San Carlos, Movement Disorders Unit, Madrid, Spain
[9] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Ctr Precis Hlth, Houston, TX 77030 USA
关键词
Feature extraction; finger tapping; keystroke dynamics; mHealth; passive monitoring; signal processing; smartphone; DISABILITY;
D O I
10.1109/TBME.2017.2664802
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Mobile technology is opening a wide range of opportunities for transforming the standard of care for chronic disorders. Using smartphones as tools for longitudinally tracking symptoms could enable personalization of drug regimens and improve patient monitoring. Parkinson's disease (PD) is an ideal candidate for these tools. At present, evaluation of PD signs requires trained experts to quantify motor impairment in the clinic, limiting the frequency and quality of the information available for understanding the status and progression of the disease. Mobile technology can help clinical decision making by completing the information of motor status between hospital visits. This paper presents an algorithm to detect PD by analyzing the typing activity on smartphones independently of the content of the typed text. We propose a set of touchscreen typing features based on a covariance, skewness, and kurtosis analysis of the timing information of the data to capture PD motor signs. We tested these features, both independently and in a multivariate framework, in a population of 21 PD and 23 control subjects, achieving a sensitivity/specificity of 0.81/0.81 for the best performing feature and 0.73/0.84 for the best multivariate method. The results of the alternating finger-tapping, an established motor test, measured in our cohort are 0.75/0.78. This paper contributes to the development of a home-based, high-compliance, and highfrequency PD motor test by analysis of routine typing on touchscreens.
引用
收藏
页码:1994 / 2002
页数:9
相关论文
共 25 条
  • [1] [Anonymous], PLOS ONE
  • [2] Validity of the finger tapping test in Parkinson's disease, elderly and young healthy subjects: Is there a role for central fatigue?
    Arias, Pablo
    Robles-Garcia, Veronica
    Espinosa, Nelson
    Corral, Yoanna
    Cudeiro, Javier
    [J]. CLINICAL NEUROPHYSIOLOGY, 2012, 123 (10) : 2034 - 2041
  • [3] The mPower study, Parkinson disease mobile data collected using ResearchKit
    Bot, Brian M.
    Suver, Christine
    Neto, Elias Chaibub
    Kellen, Michael
    Klein, Arno
    Bare, Christopher
    Doerr, Megan
    Pratap, Abhishek
    Wilbanks, John
    Dorsey, E. Ray
    Friend, Stephen H.
    Trister, Andrew D.
    [J]. SCIENTIFIC DATA, 2016, 3
  • [4] Brooks David J, 2008, Neuropsychiatr Dis Treat, V4, P39
  • [5] Rodent models of Parkinson's disease: beyond the motor symptomatology
    Campos, Filipa L.
    Carvalho, Miguel M.
    Cristovao, Ana C.
    Je, Goun
    Baltazar, Graca
    Salgado, Antonio J.
    Kim, Yoon-Seong
    Sousa, Nuno
    [J]. FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2013, 7
  • [6] Feasibility Study of a Wearable System Based on a Wireless Body Area Network for Gait Assessment in Parkinson's Disease Patients
    Cancela, Jorge
    Pastorino, Matteo
    Arredondo, Maria T.
    Nikita, Konstantina S.
    Villagra, Federico
    Pastor, Maria A.
    [J]. SENSORS, 2014, 14 (03): : 4618 - 4633
  • [7] Epidemiology of Parkinson's disease
    de Lau, Lonneke M. L.
    Breteler, Monique M. B.
    [J]. LANCET NEUROLOGY, 2006, 5 (06) : 525 - 535
  • [8] Computer keyboard interaction as an indicator of early Parkinson's disease
    Giancardo, L.
    Sanchez-Ferro, A.
    Arroyo-Gallego, T.
    Butterworth, I.
    Mendoza, C. S.
    Montero, P.
    Matarazzo, M.
    Obeso, J. A.
    Gray, M. L.
    Estepar, R. San Jose
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [9] Psychomotor Impairment Detection via Finger Interactions with a Computer Keyboard During Natural Typing
    Giancardo, L.
    Sanchez-Ferro, A.
    Butterworth, I.
    Mendoza, C. S.
    Hooker, J. M.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [10] The Unified Parkinson's Disease Rating Scale (UPDRS): Status and recommendations
    Goetz, CG
    Poewe, W
    Rascol, O
    Sampaio, C
    Stebbins, GT
    Fahn, S
    Lang, AE
    Martinez-Martin, P
    Tilley, B
    Van Hilten, B
    Kleczka, C
    Seidl, L
    [J]. MOVEMENT DISORDERS, 2003, 18 (07) : 738 - 750