REGULARITY OF VELOCITY AVERAGES FOR TRANSPORT EQUATIONS ON RANDOM DISCRETE VELOCITY GRIDS

被引:2
作者
Ayi, Nathalie [1 ]
Goudon, Thierry [2 ]
机构
[1] Inria Rennes Bretagne Atlantique, IPSO, Res Team, IRMAR,UMR CNRS 6625, Campus Beaulieu,Batiment 22-23, F-35042 Rennes, France
[2] Univ Cote dAzur, INRIA, CNRS, LJAD, Parc Valrose, F-06108 Nice, France
来源
ANALYSIS & PDE | 2017年 / 10卷 / 05期
关键词
average lemma; discrete velocity models; random velocity grids; hydrodynamic limits; MONTE-CARLO METHOD; BOLTZMANN-EQUATION; DIFFUSION LIMIT; CONVERGENCE; SCHEMES; APPROXIMATION; EXISTENCE;
D O I
10.2140/apde.2017.10.1201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We go back to the question of the regularity of the "velocity average" integral f (x, upsilon)psi(upsilon)d mu(upsilon) when f and upsilon.del(x) f both belong to L-2, and the variable upsilon lies in a discrete subset of R-D. First of all, we provide a rate, depending on the number of velocities, for the defect of H-1/2 regularity which is reached when v ranges over a continuous set. Second of all, we show that the H-1/2 regularity holds in expectation when the set of velocities is chosen randomly. We apply this statement to investigate the consistency with the diffusion asymptotics of a Monte Carlo-like discrete velocity model.
引用
收藏
页码:1201 / 1225
页数:25
相关论文
共 47 条
  • [1] Agoshkov V.I., 1984, SOVIET MATH DOKL, V29, P662
  • [2] Alonso A., ANN I H POINCARE ANA
  • [3] [Anonymous], INTEGRATION INTEGRAL
  • [4] THE NONACCRETIVE RADIATIVE-TRANSFER EQUATIONS - EXISTENCE OF SOLUTIONS AND ROSSELAND APPROXIMATION
    BARDOS, C
    GOLSE, F
    PERTHAME, B
    SENTIS, R
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 77 (02) : 434 - 460
  • [5] Averaging lemmas with a force term in the transport equation
    Berthelin, F.
    Junca, S.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (02): : 113 - 131
  • [6] DIRECT SIMULATION AND BOLTZMANN EQUATION
    BIRD, GA
    [J]. PHYSICS OF FLUIDS, 1970, 13 (11) : 2676 - &
  • [7] Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations
    Bonnaillie-Noel, V.
    Carrillo, J. A.
    Goudon, T.
    Pavliotis, G. A.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1536 - 1569
  • [8] Averaging lemmas without time Fourier transform and application to discretized kinetic equations
    Bouchut, F
    Desvillettes, L
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 19 - 36
  • [9] Diffusion limit of the Lorentz model: Asymptotic preserving schemes
    Buet, C
    Cordier, S
    Lucquin-Desreux, B
    Mancini, S
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (04): : 631 - 655
  • [10] Caflisch R. E., 1998, Acta Numerica, V7, P1, DOI 10.1017/S0962492900002804