No-reference Quality Assessment of Contrast-Distorted Images

被引:0
|
作者
Xu, Min [1 ]
Wang, Zhiming [1 ]
机构
[1] Univ Sci & Technol, Comp & Commun Engn, Beijing, Peoples R China
关键词
human perception features; skewness; variance; intensity distribution number; BP neural network; STRUCTURAL SIMILARITY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing quality assessment methods of contrast-distorted images have excellent performance by obtaining information of reference images. However, in actual life, there are not any reference images. To deal with this problem, we propose a simple yet promising no-reference quality assessment algorithm based on the human perception features for contrast-distorted images. First, human visual perception image features are extracted, including perceptual contrast of image, skewness, variance and intensity distribution number of histogram. Then, BP network are utilized to find the mapping function between the feature set and mean opinion score or discrete mean opinion score(MOS/DMOS) given by anthropological observers. Finally, we give the quality scores of test images. Experimental results on CSIQ, TID2008, CID2013 and TID2013 show that our algorithm gives better performance than the state-of-the-art IQA methods.
引用
收藏
页码:362 / 367
页数:6
相关论文
共 50 条
  • [41] No-reference image quality assessment for dehazed images
    Ji, Bin
    Ji, Yunyun
    Gao, Han
    Hu, Xuedong
    Ding, Feng
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (01)
  • [42] Contrast Measurement for No-Reference Retinal Image Quality Assessment
    Nugroho, Hanung Adi
    Yulianti, Titin
    Setiawan, Noor Akhmad
    Dharmawan, Dhimas Arief
    2014 6TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2014, : 71 - 74
  • [43] Toward Domain Transfer for No-Reference Quality Prediction of Asymmetrically Distorted Stereoscopic Images
    Shao, Feng
    Zhang, Zhuqing
    Jiang, Qiuping
    Lin, Weisi
    Jiang, Gangyi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (03) : 573 - 585
  • [44] No-reference perceptual quality assessment of JPEG compressed images
    Wang, Z
    Sheikh, H
    Bovik, AC
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2002, : 477 - 480
  • [45] NO-REFERENCE QUALITY ASSESSMENT OF WAVELET-COMPRESSED IMAGES
    Zaramensky, Denis A.
    Priorov, Andrey L.
    Bekrenev, Vladimir A.
    Soloviev, Vladimir E.
    EUROCON 2009: INTERNATIONAL IEEE CONFERENCE DEVOTED TO THE 150 ANNIVERSARY OF ALEXANDER S. POPOV, VOLS 1- 4, PROCEEDINGS, 2009, : 1332 - 1337
  • [46] A STATISTICAL COMPARISON OF NO-REFERENCE IMAGES QUALITY ASSESSMENT ALGORITHMS
    Nouri, Anass
    Charrier, Christophe
    Saadane, Abdelhakim
    Fernandez-Maloigne, Christine
    2013 COLOUR AND VISUAL COMPUTING SYMPOSIUM (CVCS), 2013,
  • [47] A No-Reference Image Quality Assessment Metric for Wood Images
    Rajagopal, Heshalini
    Mokhtar, Norrima
    Khairuddin, Anis Salwa Mohd
    Khairunizam, Wan
    Ibrahim, Zuwairie
    Bin Adam, Asrul
    Mahiyidin, Wan Amirul Bin Wan Mohd
    JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE, 2021, 8 (02): : 127 - 133
  • [48] NO-REFERENCE IMAGE QUALITY ASSESSMENT OF WAVELET CODED IMAGES
    Khan, Mohd Haroon
    Moinuddin, Athar A.
    Khan, Ekram
    Ghanbari, Mohammed
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 293 - 296
  • [49] No-reference Contrast Metric for Medical Images
    Yelmanova, Elena S.
    Romanyshyn, Yuriy M.
    2017 IEEE 37TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2017, : 338 - 343
  • [50] No-Reference Task Performance Prediction on Distorted LWIR Images
    Goodall, Todd
    Bovik, Alan C.
    2014 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2014), 2014, : 89 - 92