Speech Emotion Recognition of Decision Fusion Based on DS Evidence Theory

被引:0
|
作者
Kuang, Yuanlu [1 ]
Li, Lijuan [1 ]
机构
[1] Hunan Univ, Sch Informat Sci & Engn, Changsha 410082, Hunan, Peoples R China
关键词
emotion recognition; decision fusion; HMM; ANN; HUMAN-COMPUTER INTERACTION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
With the development of computer technology, it is a research topic currently attracting much attention that how to identify the emotional state of the speaker automatically from speech. As a single classifier in the limitation of speech emotion recognition, we designed three kinds of classifier based on Hidden Markov Models (HMM) and Artificial Neural Network (ANN) for the four emotion of angry, sadness, surprise, disgust in this paper. Then DS evidence theory was proposed to execute decision fusion among the three kinds of emotion classifiers for a good emotion recognition result. Based on the Berlin database of emotional speech, DS evidence theory was confirmed a feasible method to significantly improve the accuracy of the speech emotion recognition, and the average recognition rate of fore emotion states has reached 83.86%.
引用
收藏
页码:795 / 798
页数:4
相关论文
共 50 条
  • [1] ANN based Decision Fusion for Speech Emotion Recognition
    Xu, Lu
    Xu, Mingxing
    Yang, Dali
    INTERSPEECH 2009: 10TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2009, VOLS 1-5, 2009, : 2003 - +
  • [2] Speech Emotion Recognition Based on Feature Fusion
    Shen, Qi
    Chen, Guanggen
    Chang, Lin
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, MACHINERY AND ENERGY ENGINEERING (MSMEE 2017), 2017, 123 : 1071 - 1074
  • [3] Ensemble Classifier based on Decision-Fusion of Multiple Models for Speech Emotion Recognition
    Noh, Kyoungju
    Lim, Jiyoun
    Chung, Seungeun
    Kim, Gague
    Jeong, Hyuntae
    2018 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2018, : 1246 - 1248
  • [4] Speech Emotion Recognition based on Multiple Feature Fusion
    Jiang, Changjiang
    Mao, Rong
    Liu, Geng
    Wang, Mingyi
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 907 - 912
  • [5] DECISION FUSION FOR EEG-BASED EMOTION RECOGNITION
    Wang, Shuai
    Du, Jiachen
    Xu, Ruifeng
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOL. 2, 2015, : 883 - 889
  • [6] Feature Fusion of Speech Emotion Recognition Based on Deep Learning
    Liu, Gang
    He, Wei
    Jin, Bicheng
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC), 2018, : 193 - 197
  • [7] Speech Emotion Recognition Based on Multi Acoustic Feature Fusion
    Xiang, Shanshan
    Anwer, Sadiyagul
    Yilahun, Hankiz
    Hamdulla, Askar
    MAN-MACHINE SPEECH COMMUNICATION, NCMMSC 2024, 2025, 2312 : 338 - 346
  • [8] Speech emotion recognition based on multimodal and multiscale feature fusion
    Hu, Huangshui
    Wei, Jie
    Sun, Hongyu
    Wang, Chuhang
    Tao, Shuo
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [9] Speech emotion recognition based on genetic algorithm-decision tree fusion of deep and acoustic features
    Sun, Linhui
    Li, Qiu
    Fu, Sheng
    Li, Pingan
    ETRI JOURNAL, 2022, 44 (03) : 462 - 475
  • [10] Speech Emotion Recognition System Based on L1 Regularized Linear Regression and Decision Fusion
    Cen, Ling
    Yu, Zhu Liang
    Dong, Ming Hui
    AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION, PT II, 2011, 6975 : 332 - +