SSR-NET: SpatialSpectral Reconstruction Network for Hyperspectral and Multispectral Image Fusion

被引:157
作者
Zhang, Xueting [1 ]
Huang, Wei [1 ]
Wang, Qi [1 ]
Li, Xuelong [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 07期
基金
中国国家自然科学基金;
关键词
Image reconstruction; Tensile stress; Spatial resolution; Machine learning; Hyperspectral imaging; Image fusion; Convolutional neural network (CNN); cross-mode message inserting (CMMI); hyperspectral image (HSI); image fusion; multispectral image (MSI); spatial-spectral reconstruction network (SSR-NET);
D O I
10.1109/TGRS.2020.3018732
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The fusion of a low-spatial-resolution hyperspectral image (HSI) (LR-HSI) with its corresponding high-spatial-resolution multispectral image (MSI) (HR-MSI) to reconstruct a high-spatial-resolution HSI (HR-HSI) has been a significant subject in recent years. Nevertheless, it is still difficult to achieve the cross-mode information fusion of spatial mode and spectral mode when reconstructing HR-HSI for the existing methods. In this article, based on a convolutional neural network (CNN), an interpretable spatialx2013;spectral reconstruction network (SSR-NET) is proposed for more efficient HSI and MSI fusion. More specifically, the proposed SSR-NET is a physical straightforward model that consists of three components: 1) cross-mode message inserting (CMMI); this operation can produce the preliminary fused HR-HSI, preserving the most valuable information of LR-HSI and HR-MSI; 2) spatial reconstruction network (SpatRN); the SpatRN concentrates on reconstructing the lost spatial information of LR-HSI with the guidance of spatial edge loss and 3) spectral reconstruction network (SpecRN); the SpecRN pays attention to reconstruct the lost spectral information of HR-MSI under the constraint of spatial edge loss. Comparative experiments are conducted on six HSI data sets of Urban, Pavia University (PU), Pavia Center (PC), Botswana, Indian Pines (IP), and Washington DC Mall (WDCM), and the proposed SSR-NET achieves the superior or competitive results in comparison with seven state-of-the-art methods. The code of SSR-NET is available at.
引用
收藏
页码:5953 / 5965
页数:13
相关论文
共 42 条
  • [1] Akhtar N, 2015, PROC CVPR IEEE, P3631, DOI 10.1109/CVPR.2015.7298986
  • [2] Boyd S., 2011, FOUND TRENDS MACH LE, V3, P1, DOI DOI 10.1561/2200000016
  • [3] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [4] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107
  • [5] Regularizing Hyperspectral and Multispectral Image Fusion by CNN Denoiser
    Dian, Renwei
    Li, Shutao
    Kang, Xudong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (03) : 1124 - 1135
  • [6] Learning a Low Tensor-Train Rank Representation for Hyperspectral Image Super-Resolution
    Dian, Renwei
    Li, Shutao
    Fang, Leyuan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (09) : 2672 - 2683
  • [7] Deep Hyperspectral Image Sharpening
    Dian, Renwei
    Li, Shutao
    Guo, Anjing
    Fang, Leyuan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) : 5345 - 5355
  • [8] Hyperspectral image super-resolution via non-local sparse tensor factorization
    Dian, Renwei
    Fang, Leyuan
    Li, Shutao
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3862 - 3871
  • [9] Hyperspectral Image Super-Resolution via Non-Negative Structured Sparse Representation
    Dong, Weisheng
    Fu, Fazuo
    Shi, Guangming
    Cao, Xun
    Wu, Jinjian
    Li, Guangyu
    Li, Xin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (05) : 2337 - 2352
  • [10] Han XH, 2018, IEEE IMAGE PROC, P2506, DOI 10.1109/ICIP.2018.8451142