Entropy solution for a nonlinear parabolic problem with homogeneous Neumann boundary condition involving variable exponents

被引:0
作者
Traore, U. [1 ]
机构
[1] Univ Joseph KI ZERBO, Lab Math & Informat LAMI, 03,BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
来源
CUBO-A MATHEMATICAL JOURNAL | 2021年 / 23卷 / 03期
关键词
Nonlinear parabolic problema; variable exponents; entropy solution; Neumann-type boundary conditions; semi-discretization; RENORMALIZED SOLUTIONS; EXISTENCE; EQUATIONS; UNIQUENESS; WEAK;
D O I
10.4067/S0719-06462021000300385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence and uniqueness of an entropy solution for a non-linear parabolic equation with homogeneous Neumann boundary condition and initial data in L1. By a time discretization technique we analyze the existence, uniqueness and stability questions. The functional setting involves Lebesgue and Sobolev spaces with variable exponents.
引用
收藏
页码:385 / 409
页数:25
相关论文
共 29 条
[1]  
Abdellaoui M., 2020, J NONLINEAR EVOL EQU, V2019, P115
[2]  
Abdellaoui M, 2019, ANN UNIV CRAIOVA-MAT, V46, P269
[3]   Well-posedness results for triply nonlinear degenerate parabolic equations [J].
Andreianov, B. ;
Bendahmane, M. ;
Karlsen, K. H. ;
Ouaro, S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) :277-302
[4]   L1 existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions [J].
Andreu, F. ;
Igbida, N. ;
Mazon, J. M. ;
Toledo, J. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (01) :61-89
[5]   Existence and uniqueness for a degenerate parabolic equation with L1-data [J].
Andreu, F ;
Mazón, JM ;
De León, SS ;
Toledo, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (01) :285-306
[6]   Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data [J].
Bendahmane, M. ;
Wittbold, P. ;
Zimmermann, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (06) :1483-1515
[7]  
Benilan P., 1995, ANN SCUOLA NORM-SCI, V22, P214
[8]  
Benzekri F., 2003, Electron. J. Differential Equations, V113, P1
[9]  
Bonzi BK, 2012, ELECTRON J DIFFER EQ
[10]   Approximated solutions of equations with L-1 data. Application to the H-convergence of quasi-linear parabolic equations. [J].
DallAglio, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 170 :207-240