Nafion-titanate nanotubes composites prepared by in situ crystallization and casting for direct ethanol fuel cells

被引:20
作者
Matos, B. R. [1 ]
Isidoro, R. A. [1 ]
Santiago, E. I. [1 ]
Tavares, A. C. [3 ]
Ferlauto, A. S. [2 ]
Muccillo, R. [1 ]
Fonseca, F. C. [1 ]
机构
[1] Inst Pesquisas Energet & Nucl, Av Prof Lineu Prestes 2242, BR-05508000 Sao Paulo, Brazil
[2] Univ Fed Minas Gerais, Dept Fis, BR-31270901 Belo Horizonte, MG, Brazil
[3] Inst Natl Rech Sci Energie Mat & Telecommun, Varennes, PQ J3X 1S2, Canada
基金
加拿大自然科学与工程研究理事会; 巴西圣保罗研究基金会;
关键词
Direct ethanol fuel cell; Nafion; Composite; Water retention; HIGH-TEMPERATURE; PROTON CONDUCTIVITY; FORMIC-ACID; MEMBRANES; WATER; ELECTROLYTES; TRANSPORT; STABILITY; CATALYSTS; SORPTION;
D O I
10.1016/j.ijhydene.2014.11.102
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The physical properties relevant for the application of Nafion-titanate nanotubes composites in electrochemical devices such as water absorption capacity, ion conductivity, and thermal stability are reported. The nanocomposites were prepared by in situ hydrothermal conversion of anatase into titanate nanotubes in Nafion matrix and by casting of nanotube suspensions in Nafion. Composites were characterized by differential scanning calorimetry (DSC), dynamic vapor sorption (DVS), X-ray diffraction (XRD), transmission electron microscopy (TEM), proton conductivity, and tested in direct ethanol fuel cells (DEFC). Nafion-titanate nanotubes displayed higher water retention capacity in comparison with Nafion-titania composites as revealed by DSC and DVS. The ion conductivity at intermediate temperatures (80-130 degrees C) for Nafion-titanate nanotube composites is higher than Nafion-titania composites indicating that the hydrophilicity and conduction properties of the titanate phase contributed to the improvement of the membrane electrical properties. The Nafion-titanate nanotube composites prepared by in situ sol-gel exhibited improved electric and electrochemical performance at high temperatures compared to the composite prepared by casting. The combined XRD, DSC, and TEM data indicated that at RH = 100% Nafion-titanate nanotubes are thermally stable up to 130 degrees C, but for higher temperatures the titanate nanotubes are converted to rutile nanorods. Copyright 0 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1859 / 1867
页数:9
相关论文
共 44 条
  • [1] A review on methanol crossover in direct methanol fuel cells: challenges and achievements
    Ahmed, Mahmoud
    Dincer, Ibrahim
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) : 1213 - 1228
  • [2] Composite membranes for medium-temperature PEM fuel cells
    Alberti, G
    Casciola, M
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 : 129 - 154
  • [3] Protonated titanates and TiO2 nanostructured materials:: Synthesis, properties, and applications
    Bavykin, Dmitry V.
    Friedrich, Jens M.
    Walsh, Frank C.
    [J]. ADVANCED MATERIALS, 2006, 18 (21) : 2807 - 2824
  • [4] High-performance solid acid fuel cells through humidity stabilization
    Boysen, DA
    Uda, T
    Chisholm, CRI
    Haile, SM
    [J]. SCIENCE, 2004, 303 (5654) : 68 - 70
  • [5] Ethanol oxidation on carbon supported Pt-Sn electrocatalysts prepared by reduction with formic acid
    Colmati, Flavio
    Antolini, Ermete
    Gonalez, Ernesto R.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (01) : B39 - B47
  • [6] Polymer electrolyte membranes for the direct methanol fuel cell: A review
    Deluca, Nicholas W.
    Elabd, Yossef A.
    [J]. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (16) : 2201 - 2225
  • [7] Simultaneous Determination of the Permeability of a Nafion Membrane to Formic Acid and Water
    Dugas, R.
    Guay, D.
    Tavares, A. C.
    [J]. FUEL CELLS, 2013, 13 (06) : 1024 - 1031
  • [8] Membrane design for direct ethanol fuel cells: A hybrid proton-conducting interpenetrating polymer network
    Fu, R. -Q.
    Hong, L.
    Lee, J. -Y.
    [J]. FUEL CELLS, 2008, 8 (01) : 52 - 61
  • [9] Solid acids as fuel cell electrolytes
    Haile, SM
    Boysen, DA
    Chisholm, CRI
    Merle, RB
    [J]. NATURE, 2001, 410 (6831) : 910 - 913
  • [10] Review: Direct ethanol fuel cells
    Kamarudin, M. Z. F.
    Kamarudin, S. K.
    Masdar, M. S.
    Daud, W. R. W.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (22) : 9438 - 9453