APPLICATION OF LOCALIZATION TO THE MULTIVARIATE MOMENT PROBLEM

被引:0
作者
Marshall, Murray [1 ]
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
POLYNOMIALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is explained how the localization technique introduced by the author in [19] leads to a useful reformulation of the multivariate moment problem in terms of extension of positive semidefinite linear functionals to positive semidefinite linear functionals on the localization of R[(x) under bar] at p = Pi(n)(i=1) (1 + x(i)(2)) or p' = Pi(n-1)(i=1) (1 + x(i)(2)). It is explained how this reformulation can be. exploited to prove new results concerning existence and uniqueness of the measure mu, and density of C[(x) under bar] in L-s (mu) and, at the same time, to give new proofs of old results of Fuglede [11], Nussbaum [21], Petersen [22] and Schmtidgen [27], results which were proved previously using the theory of strongly commuting self-adjoint operators on Hilbert space.
引用
收藏
页码:269 / 286
页数:18
相关论文
共 28 条
[1]  
Akhiezer N. I., 1965, CLASSICAL MOMENT PRO
[2]  
[Anonymous], MATH SURV
[3]  
[Anonymous], HARMONIC ANAL SEMIGR
[4]  
[Anonymous], MOMENTS MATH
[5]  
[Anonymous], ANN FAC SCI TOULOUSE
[6]  
[Anonymous], MATH SURV MON
[7]   REMARK ON THE MULTIDIMENSIONAL MOMENT PROBLEM [J].
BERG, C ;
CHRISTENSEN, JPR ;
JENSEN, CU .
MATHEMATISCHE ANNALEN, 1979, 243 (02) :163-169
[8]  
BERG C, 1983, CR ACAD SCI I-MATH, V296, P661
[9]   ROTATION INVARIANT MOMENT PROBLEMS [J].
BERG, C ;
THILL, M .
ACTA MATHEMATICA, 1991, 167 (3-4) :207-227
[10]   2 PARAMETER MOMENT PROBLEMS [J].
DEVINATZ, A .
DUKE MATHEMATICAL JOURNAL, 1957, 24 (04) :481-498