Fiber-Reinforced Concrete in Closure Pours over Piers

被引:0
|
作者
Ozyildirim, H. Celik [1 ]
Khakimova, Evelina [2 ]
Nair, Harikrishnan [3 ]
Moruza, Gail M. [4 ]
机构
[1] VDOT Virginia Transportat Res Council VTRC, Charlottesville, VA 22903 USA
[2] AECOM, Los Angeles, CA USA
[3] VTRC, Mat Team, Charlottesville, VA USA
[4] VTRC, Charlottesville, VA USA
关键词
closure pour; crack width; fiber-reinforced concrete; polypropylene fibers; polyvinyl alcohol fibers; steel fibers; PERMEABILITY; COMPOSITES;
D O I
10.14359/51689561
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Cracks in concrete, high permeability, or leaking bridge joints facilitate the penetration of chloride solutions, resulting in extensive corrosion damage. Joints can be eliminated by constructing continuous decks or closure pours, and infiltration through concrete can be minimized by using low-permeability concrete and fiber-reinforced concrete (FRC) that controls cracks. This study investigated low-permeability FRCs with polyvinyl alcohol (PVA), polypropylene (PP), or steel (S) fibers to control cracking in closure pours. Large volumes of suitable fibers used in FRC enable high residual strengths and deflection hardening behavior. Generally, in these concretes, multiple tight cracks (less than 0.004 in. [0.1 mm] wide) occur, which resist the ingress of harmful solutions. In two bridges on I-64 near Covington, VA, closure pours with FRCs were placed. The initial results indicate, in general, no or tight cracking in FRCs with PVA, PP, or S fibers. Deflection hardening did not occur in all mixtures; however, the tight cracks observed were attributed to the addition of fibers and the presence of primary reinforcement.
引用
收藏
页码:397 / 406
页数:10
相关论文
共 50 条
  • [1] PROPERTIES OF POLYPROPYLENE FIBER-REINFORCED CONCRETE
    BAYASI, Z
    ZENG, J
    ACI MATERIALS JOURNAL, 1993, 90 (06) : 605 - 610
  • [2] Tension Stiffening and Cracking of Hybrid Fiber-Reinforced Concrete
    Ganesan, N.
    Indira, P. V.
    Sabeena, M. V.
    ACI MATERIALS JOURNAL, 2013, 110 (06) : 715 - 721
  • [3] Flexural Cracks in Fiber-Reinforced Concrete Beams with Fiber-Reinforced Polymer Reinforcing Bars
    Lee, Won K.
    Jansen, Daniel C.
    Berlin, Kenneth B.
    Cohen, Ian E.
    ACI STRUCTURAL JOURNAL, 2010, 107 (03) : 321 - 329
  • [4] PERMEABILITY CHARACTERISTICS OF POLYPROPYLENE FIBER-REINFORCED CONCRETE
    SOROUSHIAN, P
    MIRZA, F
    ALHOZAIMY, A
    ACI MATERIALS JOURNAL, 1995, 92 (03) : 291 - 295
  • [5] Mesoscale analysis of Fiber-Reinforced concrete beams
    Al-Ahmed, Ali Hussein Ali
    Al-Rumaithi, Ayad
    Allawi, Abbas A.
    El-Zohairy, Ayman
    ENGINEERING STRUCTURES, 2022, 266
  • [6] Evaluation of Elastic Modulus of Fiber-Reinforced Concrete
    Suksawang, Nakin
    Wtaife, Salem
    Alsabbagh, Ahmed
    ACI MATERIALS JOURNAL, 2018, 115 (02) : 239 - 249
  • [7] Constitutive modeling of steel fiber-reinforced concrete
    Moradi, Mahdi
    Bagherieh, Ali Reza
    Esfahani, Mohammad Reza
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2020, 29 (03) : 388 - 412
  • [8] Fatigue behavior of fiber-reinforced concrete in compression
    Cachim, PB
    Figueiras, JA
    Pereira, PAA
    CEMENT & CONCRETE COMPOSITES, 2002, 24 (02): : 211 - 217
  • [9] Mesoscale analysis of Fiber-Reinforced concrete beams
    Al-Ahmed, Ali Hussein Ali
    Al-Rumaithi, Ayad
    Allawi, Abbas A.
    El-Zohairy, Ayman
    ENGINEERING STRUCTURES, 2022, 266
  • [10] Fiber-Matrix Interactions in Fiber-Reinforced Concrete: A Review
    Abbas, Yassir M.
    Khan, M. Iqbal
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2016, 41 (04) : 1183 - 1198