Complex Langevin method: When can it be trusted?

被引:154
作者
Aarts, Gert [1 ]
Seiler, Erhard [2 ]
Stamatescu, Ion-Olimpiu [3 ,4 ]
机构
[1] Swansea Univ, Dept Phys, Swansea, W Glam, Wales
[2] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany
[3] Heidelberg Univ, Inst Theoret Phys, D-6900 Heidelberg, Germany
[4] FEST, Heidelberg, Germany
来源
PHYSICAL REVIEW D | 2010年 / 81卷 / 05期
关键词
MONTE-CARLO; SIMULATIONS; EQUATIONS;
D O I
10.1103/PhysRevD.81.054508
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze to what extent the complex Langevin method, which is in principle capable of solving the so-called sign problems, can be considered as reliable. We give a formal derivation of the correctness and then point out various mathematical loopholes. The detailed study of some simple examples leads to practical suggestions about the application of the method.
引用
收藏
页数:13
相关论文
共 28 条
[1]  
AARTS G, ARXIV09120617, P74012
[2]   Stochastic quantization at finite chemical potential [J].
Aarts, Gert ;
Stamatescu, Ion-Olimpiu .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (09)
[3]   Complex Langevin dynamics at finite chemical potential: mean field analysis in the relativistic Bose gas [J].
Aarts, Gert .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (05)
[4]   Can Stochastic Quantization Evade the Sign Problem? The Relativistic Bose Gas at Finite Chemical Potential [J].
Aarts, Gert .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[5]   NUMERICAL PROBLEMS IN APPLYING THE LANGEVIN EQUATION TO COMPLEX EFFECTIVE ACTIONS [J].
AMBJORN, J ;
YANG, SK .
PHYSICS LETTERS B, 1985, 165 (1-3) :140-146
[6]   THE COMPLEX LANGEVIN EQUATION AND MONTE-CARLO SIMULATIONS OF ACTIONS WITH STATIC CHARGES [J].
AMBJORN, J ;
FLENSBURG, M ;
PETERSON, C .
NUCLEAR PHYSICS B, 1986, 275 (03) :375-397
[7]  
[Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
[8]   LANGEVIN SIMULATIONS OF LATTICE FIELD-THEORIES [J].
BATROUNI, GG ;
KATZ, GR ;
KRONFELD, AS ;
LEPAGE, GP ;
SVETITSKY, B ;
WILSON, KG .
PHYSICAL REVIEW D, 1985, 32 (10) :2736-2747
[9]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[10]   Simulating nonequilibrium quantum fields with stochastic quantization techniques [J].
Berges, J ;
Stamatescu, IO .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)