The law of the iterated logarithm for the integrated squared deviation of a kernel density estimator

被引:6
作者
Giné, E
Mason, DM
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Delaware, Stat Program, Newark, DE 19717 USA
关键词
integrated squared deviation; kernel density estimator; law of the iterated logarithm;
D O I
10.3150/bj/1093265638
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let f(n),(K) denote a kernel estimator of a density f in R such that integral(R)f(P)(x)dx < infinity for some p > 2. It is shown, under quite general conditions on the kernel K and on the window sizes, that the centred integrated squared deviation Of f(n),(K) from its mean, \\f(n),(K) - Ef(n),(K) \\(2)(2) - E\\f(n),(K) - Ef(n),(K) \\(2)(2) satisfies a law of the iterated logarithm (LIL). This is then used to obtain an LIL for the, deviation from the true density, \\f(n),(K) - f\\(2)(2) - E\\f(n),(K) - f\\(2)(2). The main tools are the Komlos-Major-Tusnady approximation, a moderate-deviation result for triangular arrays of weighted chi-square variables adapted from work by Pinsky and an exponential inequality due to Gine, Latala and Zinn for degenerate U-statistics applied in combination with decoupling and maximal inequalities.
引用
收藏
页码:721 / 752
页数:32
相关论文
共 19 条
[1]  
BEIRLANT J, 1995, MATH METHODS STAT, V4, P1
[2]   SOME GLOBAL MEASURES OF DEVIATIONS OF DENSITY-FUNCTION ESTIMATES [J].
BICKEL, PJ ;
ROSENBLA.M .
ANNALS OF STATISTICS, 1973, 1 (06) :1071-1095
[3]   CENTRAL LIMIT-THEOREMS FOR LP-NORMS OF DENSITY ESTIMATORS [J].
CSORGO, M ;
HORVATH, L .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 80 (02) :269-291
[4]  
de la Pena V.H., 1999, Decoupling, From dependence to independence, Randomly stopped processes. U-statistics and processes. Martingales and beyond, Probability and its Applications (New York)
[5]   BOUNDS ON THE TAIL PROBABILITY OF U-STATISTICS AND QUADRATIC-FORMS [J].
DELAPENA, VH ;
MONTGOMERYSMITH, SJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 31 (02) :223-227
[6]  
DUNFORD N, 1964, LINEAR OPERATORS 2
[7]  
Eggermont P. P. B., 2001, MAXIMUM PENALIZED LI, V1
[8]  
FERNIQUE X, 1970, CR ACAD SCI A MATH, V270, P1698
[9]  
Giné E, 2003, ANN PROBAB, V31, P719
[10]  
Giné E, 2000, PROG PROBAB, V47, P13