SMARTexplore: Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach

被引:0
作者
Blumenschein, Michael [1 ]
Behrisch, Michael [2 ]
Schmid, Stefanie [1 ]
Butscher, Simon [1 ]
Wahl, Deborah R. [1 ]
Villinger, Karoline [1 ]
Renner, Britta [1 ]
Reiterer, Harald [1 ]
Keim, Daniel A. [1 ]
机构
[1] Univ Konstanz, Constance, Germany
[2] Harvard Univ, Cambridge, MA 02138 USA
来源
2018 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST) | 2018年
关键词
High-dimensional data; visual exploration; pattern-driven analysis; tabular visualization; subspace; aggregation; VISUALIZATION; EXPLORATION; METRICS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present SMARTEXPLORE, a novel visual analytics technique that simplifies the identification and understanding of clusters, correlations, and complex patterns in high-dimensional data. The analysis is integrated into an interactive table-based visualization that maintains a consistent and familiar representation throughout the analysis. The visualization is tightly coupled with pattern matching, subspace analysis, reordering, and layout algorithms. To increase the analyst's trust in the revealed patterns, SMARTEXPLORE automatically selects and computes statistical measures based on dimension and data properties. While existing approaches to analyzing high-dimensional data (e.g., planar projections and Parallel coordinates) have proven effective, they typically have steep learning curves for non-visualization experts. Our evaluation, based on three expert case studies, confirms that non-visualization experts successfully reveal patterns in high-dimensional data when using SMARTEXPLORE.
引用
收藏
页码:36 / 47
页数:12
相关论文
共 71 条
[1]   Matrix zoom: A visual interface to semi-external graphs [J].
Abello, J ;
van Ham, F .
IEEE SYMPOSIUM ON INFORMATION VISUALIZATION 2004, PROCEEDINGS, 2004, :183-190
[2]  
Albuquerque G., 2010, 2010 Proceedings of IEEE Symposium on Visual Analytics Science and Technology (VAST 2010), P19, DOI 10.1109/VAST.2010.5652433
[3]   Similarity clustering of dimensions for an enhanced visualization of multidimensional data [J].
Ankerst, M ;
Berchtold, S ;
Keim, DA .
IEEE SYMPOSIUM ON INFORMATION VISUALIZATION - PROCEEDINGS, 1998, :52-+
[4]  
[Anonymous], 2017, EUROPEAN HLTH PSYCHO
[5]  
[Anonymous], 1952, Psychometrika
[6]  
[Anonymous], 2017, EUROPEAN HLTH PSYCHO
[7]   Quality Metrics for Information Visualization [J].
Behrisch, M. ;
Blumenschein, M. ;
Kim, N. W. ;
Shao, L. ;
El-Assady, M. ;
Fuchs, J. ;
Seebacher, D. ;
Diehl, A. ;
Brandes, U. ;
Pfister, H. ;
Schreck, T. ;
Weiskopf, D. ;
Keim, D. A. .
COMPUTER GRAPHICS FORUM, 2018, 37 (03) :625-662
[8]   Matrix Reordering Methods for Table and Network Visualization [J].
Behrisch, Michael ;
Bach, Benjamin ;
Riche, Nathalie Henry ;
Schreck, Tobias ;
Fekete, Jean-Daniel .
COMPUTER GRAPHICS FORUM, 2016, 35 (03) :693-716
[9]  
Bertin J., 1975, NOUVELLE BIBLIOTHEQU
[10]   Visual Analytics for Exploring Local Impact of Air Traffic [J].
Buchmueller, J. ;
Janetzko, H. ;
Andrienko, G. ;
Andrienko, N. ;
Fuchs, G. ;
Keim, D. A. .
COMPUTER GRAPHICS FORUM, 2015, 34 (03) :181-190