On the oscillatory behavior of solutions of second order nonlinear differential equations

被引:0
作者
Hong, HL [1 ]
机构
[1] Natl Cent Univ, Dept Math, Chungli 320, Taiwan
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1998年 / 52卷 / 1-2期
关键词
oscillation; behavior; nonlinear differential equation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha > 0 be a constant. We establish the oscillatory behavior of the second order nonlinear differential equation (*) (a(t)psi(x)\x'\alpha-1x')' + q(t)f(x) = r(t), t greater than or equal to t(0) > 0, where a, q, r is an element of C([t(0), infinity), R) and f, psi is an element of C(R, R), a(t) > 0, alpha > 0 is a constant, q(t) not equivalent to 0 and psi(x) > 0 for x not equal 0.
引用
收藏
页码:55 / 68
页数:14
相关论文
共 8 条
[1]  
BLASKO R, 1990, J MATH ANAL APPL, V151, P330
[2]  
Elbert A., 1981, C MATH SOC JANOS BOL, V30, P153
[3]  
GRAEF JR, 1986, CZECH MATH J, V36, P275
[4]  
HSU HB, 1996, NONLINEAR WORLD, V3, P835
[5]  
Kusano T., 1995, Hiroshima Math J, V25, P371, DOI [10.32917/hmj/1206127717, DOI 10.32917/HMJ/1206127717]
[6]  
KUSANO T, 1994, HIROSHIMA MATH J, V24, P549
[7]  
Walter W., 1970, ERGEBNISSE MATH IHRE, V55
[8]   OSCILLATORY PROPERTY FOR 2ND-ORDER LINEAR DELAY DIFFERENTIAL-EQUATIONS [J].
YAN, JR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 122 (02) :380-384