THRESHOLD DYNAMICS IN A STOCHASTIC SIRS EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE

被引:0
作者
Zhao, Yanan [1 ,2 ]
Zhang, Xiaoying [2 ]
O'Regan, Donal [3 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[2] Changchun Univ, Sch Sci, Changchun 130021, Jilin, Peoples R China
[3] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2019年 / 9卷 / 06期
基金
中国博士后科学基金; 中国国家自然科学基金; 美国国家科学基金会;
关键词
SIRS epidemic model; nonlinear incidence rate; extinction; persistence; threshold; GLOBAL STABILITY; EXTINCTION; BEHAVIOR; VACCINATION; PERSISTENCE; EQUATION;
D O I
10.11948/20180041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the dynamic of a stochastic Susceptible-InfectiousRecovered-Susceptible (SIRS) epidemic model with nonlinear incidence rate.The crucial threshold (R) over tilde (0) is identified and this will determine the extinction and persistence of the epidemic when the noise is small. We also discuss the asymptotic behavior of the stochastic model around the endemic equilibrium of the corresponding deterministic system. When the noise is large, we find that a large noise intensity has the effect of suppressing the epidemic, so that it dies out. Finally, these results are illustrated by computer simulations.
引用
收藏
页码:2096 / 2110
页数:15
相关论文
共 34 条
[1]   A stochastic SIRS epidemic model incorporating media coverage and driven by Levy noise [J].
Berrhazi, Badr-eddine ;
El Fatini, Mohamed ;
Laaribi, Aziz ;
Pettersson, Roger ;
Taki, Regragui .
CHAOS SOLITONS & FRACTALS, 2017, 105 :60-68
[2]   A stochastic SIRS epidemic model with a general awareness-induced incidence [J].
Berrhazi, Badreddine ;
El Fatini, Mohamed ;
Lahrouz, Aadil ;
Settati, Adel ;
Taki, Regragui .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 512 :968-980
[3]   Environmental variability in a stochastic epidemic model [J].
Cai, Yongli ;
Jiao, Jianjun ;
Gui, Zhanji ;
Liu, Yuting ;
Wang, Weiming .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 329 :210-226
[4]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[5]   Estimation of the reproduction number of dengue fever from spatial epidemic data [J].
Chowell, G. ;
Diaz-Duenas, P. ;
Miller, J. C. ;
Alcazar-Velazco, A. ;
Hyman, J. M. ;
Fenimore, P. W. ;
Castillo-Chavez, C. .
MATHEMATICAL BIOSCIENCES, 2007, 208 (02) :571-589
[6]   Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model [J].
Enatsu, Yoichi ;
Nakata, Yukihiko ;
Muroya, Yoshiaki .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) :2120-2133
[7]   Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate [J].
Gakkhar, Sunita ;
Negi, Kuldeep .
CHAOS SOLITONS & FRACTALS, 2008, 35 (03) :626-638
[8]   A STOCHASTIC DIFFERENTIAL EQUATION SIS EPIDEMIC MODEL [J].
Gray, A. ;
Greenhalgh, D. ;
Hu, L. ;
Mao, X. ;
Pan, J. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (03) :876-902
[9]   The Behavior of an SIR Epidemic Model with Stochastic Perturbation [J].
Ji, Chunyan ;
Jiang, Daqing ;
Shi, Ningzhong .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2012, 30 (05) :755-773
[10]   Multigroup SIR epidemic model with stochastic perturbation [J].
Ji, Chunyan ;
Jiang, Daqing ;
Shi, Ningzhong .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (10) :1747-1762