A neurocomputing model for real coded genetic algorithm with the minimal generation gap

被引:3
作者
Gong, DX [1 ]
Ruan, XG [1 ]
Qiao, JF [1 ]
机构
[1] Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100022, Peoples R China
关键词
crossover; minimal generation gap model; neural network; parallel implementation; real coded genetic algorithm;
D O I
10.1007/s00521-004-0407-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes using neural networks (NN) to implement a real coded genetic algorithm (GA) with the center of gravity crossover (CGX) and the minimal generation gap (MGG) model. With all genetic operations of GA including selection, crossover, mutation and evaluation implemented with NN modules, this approach can realize in parallel genetic operations on the whole chromosome to achieve the maximum parallel realization potential of the MGG model of the GA. At the same time expensive hardware for field programmable gate arrays (FPGA) and the high speed memory of hardware for GA can be avoided. The performance of our solution is validated with a suite of benchmark test functions. This paper suggests that implementing GA with NN is a promising research direction for greatly reducing the running time of GA.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 17 条
[1]  
Aporntewan C, 2001, IEEE C EVOL COMPUTAT, P624, DOI 10.1109/CEC.2001.934449
[2]  
Cantu-Paz E., 1998, Calculateurs paralleles, reseaux et systems repartis, V10, P141
[3]  
CANTUPAZ E, 1999, 99008 ILLIGAL U ILL
[4]  
EIBEN AE, 2002, ADV EVOLUTIONARY COM
[5]  
Esparcia-Alcazar A. I., 1997, Genetic Programming 1997 Proceedings of the Second Annual Conference, P89
[6]  
GOLDBERG DE, 1989, GENETIC ALGORITHM SE
[7]  
KEEDWELL E, 2003, 1 EUR WORKSH EV COMP
[8]   An adaptive real-coded genetic algorithm [J].
Lee, LH ;
Fan, YL .
APPLIED ARTIFICIAL INTELLIGENCE, 2002, 16 (06) :457-486
[9]  
MICHALEWICZ Z, 1996, GENETIC ALGORITHMS D
[10]  
Mount DW, 2002, BIOINFORMATICS SEQUE