The existence of mild and classical solutions for time fractional Fokker-Planck equations

被引:8
作者
Peng, Li [1 ,3 ]
Zhou, Yong [1 ,2 ]
机构
[1] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau 999078, Peoples R China
[3] Natl Ctr Appl Math, Changsha, Hunan, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 199卷 / 02期
基金
中国国家自然科学基金;
关键词
Riemann-Liouville fractional derivative; Fokker-Planck equations; Mild and classical solutions; Existence and uniqueness; BOUNDARY-VALUE-PROBLEMS; CAUCHY-PROBLEMS; DIFFUSION;
D O I
10.1007/s00605-022-01710-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Time fractional Fokker-Planck equations can be used to describe the subdiffusion in an external time-and space-dependent force field F(t, x). In this paper, we convert it to the form of the following problems partial derivative(u)(t) - kappa(alpha)partial derivative(1-alpha)(t) Delta u = del . (F partial derivative(1-alpha)(t)u) + f, where alpha is an element of (0, 1). We obtain some results on existence and uniqueness of mild solutions allowing the "working space" that may have low regularity. Secondly, we analyze the relationship between "working space" and the value range of a when investigating the problem of classical solutions. Finally, by constructing a suitable weighted Holder continuous function space, the existence of classical solutions is derived without the restriction on alpha is an element of (1/2, 1).
引用
收藏
页码:377 / 410
页数:34
相关论文
共 50 条
  • [1] The existence of mild and classical solutions for time fractional Fokker–Planck equations
    Li Peng
    Yong Zhou
    Monatshefte für Mathematik, 2022, 199 : 377 - 410
  • [2] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [3] Existence and uniqueness of solutions for Fokker-Planck equations on Hilbert spaces
    Bogachev, Vladimir
    Da Prato, Giuseppe
    Roeckner, Michael
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (03) : 487 - 509
  • [4] Periodic solutions of Fokker-Planck equations
    Chen, Feng
    Han, Yuecai
    Li, Yong
    Yang, Xue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 285 - 298
  • [5] Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients
    Le Bris, C.
    Lions, P. -L.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (07) : 1272 - 1317
  • [6] A monotone finite volume method for time fractional Fokker-Planck equations
    Jiang, Yingjun
    Xu, Xuejun
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (04) : 783 - 794
  • [7] New approximations of space-time fractional Fokker-Planck equations
    Singh, Brajesh Kumar
    Kumar, Anil
    Gupta, Mukesh
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2023, 11 (03): : 495 - 521
  • [8] Existence Results for Fokker-Planck Equations in Hilbert Spaces
    Bogachev, Vladimir
    Da Prato, Giuseppe
    Roeckner, Michael
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 : 23 - +
  • [9] Fluctuation relations for anomalous dynamics generated by time-fractional Fokker-Planck equations
    Dieterich, Peter
    Klages, Rainer
    Chechkin, Aleksei V.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [10] An efficient high-order numerical algorithm for the time fractional Fokker-Planck equations
    Zhang, Yuxin
    Ding, Hengfei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (02) : 357 - 366