A guide to genetically encoded tools for the study of H2O2

被引:37
作者
Smolyarova, Daria D. [1 ,2 ]
Podgorny, Oleg V. [1 ,3 ,4 ]
Bilan, Dmitry S. [1 ,3 ,4 ]
Belousov, Vsevolod V. [1 ,3 ,4 ,5 ,6 ]
机构
[1] Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow, Russia
[2] Lomonosov Moscow State Univ, Fac Biol, Moscow, Russia
[3] Pirogov Russian Natl Res Med Univ, Ctr Precis Genome Editing & Genet Technol Biomed, Moscow, Russia
[4] Pirogov Russian Natl Res Med Univ, Lab Expt Oncol, Moscow, Russia
[5] Fed Med Biol Agcy, Fed Ctr Brain Res & Neurotechnol, Moscow 117997, Russia
[6] Georg August Univ Gottingen, Inst Cardiovasc Physiol, Gottingen, Germany
基金
俄罗斯科学基金会;
关键词
d-amino acid oxidase; genetically encoded fluorescent sensors; hydrogen peroxide; HyPer; reactive oxygen species; roGFP2-based sensors; AMINO-ACID OXIDASE; HYDROGEN-PEROXIDE; OXIDATIVE STRESS; REDOX SWITCHES; STRUCTURAL BASIS; FREE-RADICALS; STEADY-STATE; INACTIVATION; PHYSIOLOGY; ACTIVATION;
D O I
10.1111/febs.16088
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cell metabolism heavily relies on the redox reactions that inevitably generate reactive oxygen species (ROS). It is now well established that ROS fluctuations near basal levels coordinate numerous physiological processes in living organisms, thus exhibiting regulatory functions. Hydrogen peroxide, the most long-lived ROS, is a key contributor to ROS-dependent signal transduction in the cell. H2O2 is known to impact various targets in the cell; therefore, the question of how H2O2 modulates physiological processes in a highly specific manner is central in redox biology. To resolve this question, novel genetic tools have recently been created for detecting H2O2 and emulating its generation in living organisms with unmatched spatiotemporal resolution. Here, we review H2O2-sensitive genetically encoded fluorescent sensors and opto- and chemogenetic tools for controlled H2O2 generation.
引用
收藏
页码:5382 / 5395
页数:14
相关论文
共 121 条
[1]   NADPH oxidase activity is required for endothelial cell proliferation and migration [J].
Abid, MR ;
Kachra, Z ;
Spokes, KC ;
Aird, WC .
FEBS LETTERS, 2000, 486 (03) :252-256
[2]   New photosensitizers for photodynamic therapy [J].
Abrahamse, Heidi ;
Hamblin, Michael R. .
BIOCHEMICAL JOURNAL, 2016, 473 :347-364
[3]   Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission [J].
Accardi, Michael V. ;
Daniels, Bryan A. ;
Brown, Patricia M. G. E. ;
Fritschy, Jean-Marc ;
Tyagarajan, Shiva K. ;
Bowie, Derek .
NATURE COMMUNICATIONS, 2014, 5
[4]   Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis [J].
Andrio, Emilie ;
Marino, Daniel ;
Marmeys, Anthony ;
de Segonzac, Marion Dunoyer ;
Damiani, Isabelle ;
Genre, Andrea ;
Huguet, Stephanie ;
Frendo, Pierre ;
Puppo, Alain ;
Pauly, Nicolas .
NEW PHYTOLOGIST, 2013, 198 (01) :190-202
[5]   Thiol-Based Redox Switches and Gene Regulation [J].
Antelmann, Haike ;
Helmann, John D. .
ANTIOXIDANTS & REDOX SIGNALING, 2011, 14 (06) :1049-1063
[6]   Estimation of H2O2 gradients across biomembranes [J].
Antunes, F ;
Cadenas, E .
FEBS LETTERS, 2000, 475 (02) :121-126
[7]   Exploring real-time in vivo redox biology of developing and aging Caenorhabditis elegans [J].
Back, Patricia ;
De Vos, Winnok H. ;
Depuydt, Geert G. ;
Matthijssens, Filip ;
Vanfleteren, Jacques R. ;
Braeckman, Bart P. .
FREE RADICAL BIOLOGY AND MEDICINE, 2012, 52 (05) :850-859
[8]   Epidermal growth factor (EGF)-induced generation of hydrogen peroxide - Role in EGF receptor-mediated tyrosine phosphorylation [J].
Bae, YS ;
Kang, SW ;
Seo, MS ;
Baines, IC ;
Tekle, E ;
Chock, PB ;
Rhee, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (01) :217-221
[9]   Neurodegenerative diseases and oxidative stress [J].
Barnham, KJ ;
Masters, CL ;
Bush, AI .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (03) :205-214
[10]   The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J].
Bedard, Karen ;
Krause, Karl-Heinz .
PHYSIOLOGICAL REVIEWS, 2007, 87 (01) :245-313