Cobalt-Phthalocyanine-Derived Molecular Isolation Layer for Highly Stable Lithium Anode

被引:57
作者
Dai, Hongliu [1 ,2 ]
Dong, Jing [1 ]
Wu, Mingjie [2 ]
Hu, Qingmin [2 ]
Wang, Dongniu [3 ]
Zuin, Lucia [3 ]
Chen, Ning [3 ]
Lai, Chao [1 ]
Zhang, Gaixia [2 ]
Sun, Shuhui [2 ]
机构
[1] Jiangsu Normal Univ, Sch Chem & Mat Sci, Xuzhou 201116, Jiangsu, Peoples R China
[2] Inst Natl Rech Sci INRS, Ctr Energie Mat & Telecommun, Varennes, PQ J3X 1S2, Canada
[3] Canadian Light Source Inc, Saskatoon, SK S7N 2V3, Canada
基金
加拿大创新基金会; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
cobalt phthalocyanine; dendrite-free; electrolyte additives; lithium battery; X-RAY-ABSORPTION; LI-ION BATTERIES; METAL ANODE; STRUCTURAL INVESTIGATIONS; LIFEPO4; ELECTRODES; CATHODE MATERIAL; IN-SITU; INTERFACE; STABILITY; INTERPHASE;
D O I
10.1002/anie.202106027
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The uneven consumption of anions during the lithium (Li) deposition process triggers a space charge effect that generates Li dendrites, seriously hindering the practical application of Li-metal batteries. We report on a cobalt phthalocyanine electrolyte additive with a planar molecular structure, which can be tightly adsorbed on the Li anode surface to form a dense molecular layer. Such a planar molecular layer cannot only complex with Li ions to reduce the space charge effect, but also suppress side reactions between the anode and the electrolyte, producing a stable solid electrolyte interphase composed of amorphous lithium fluoride (LiF) and lithium carbonate (LiCO3), as verified by X-ray absorption near-edge spectroscopy. As a result, the Li|Li symmetric cell exhibits excellent cycling stability above 700 h under a high plating capacity of 3 mAh cm(-2). Moreover, the assembled Li|lithium iron phosphate (LiFePO4, LFP) full-cell can also deliver excellent cycling over 200 cycles under lean electrolyte conditions (3 mu L mg(-1)).
引用
收藏
页码:19852 / 19859
页数:8
相关论文
共 58 条
[1]   The formation and stability of the solid electrolyte interface on the graphite anode [J].
Agubra, Victor A. ;
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2014, 268 :153-162
[2]  
[Anonymous], 2018, ANGEW CHEM, V130, P5399
[3]   Li-ion transport at the interface between a graphite anode and Li2CO3 solid electrolyte interphase: ab initio molecular dynamics study [J].
Baba, Takeshi ;
Sodeyama, Keitaro ;
Kawamura, Yoshiumi ;
Tateyama, Yoshitaka .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (19) :10764-10774
[4]   Gel Polymer Electrolytes Based on Polymerizable Lithium Salt and Poly(ethylene glycol) for Lithium Battery Applications [J].
Baik, Ji-Hoon ;
Kim, Sangwan ;
Hong, Dong Gi ;
Lee, Jong-Chan .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (33) :29718-29724
[5]   Stabilizing lithium metal using ionic liquids for long-lived batteries [J].
Basile, A. ;
Bhatt, A. I. ;
O'Mullane, A. P. .
NATURE COMMUNICATIONS, 2016, 7
[6]   Anodes for Rechargeable Lithium-Sulfur Batteries [J].
Cao, Ruiguo ;
Xu, Wu ;
Lv, Dongping ;
Xiao, Jie ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2015, 5 (16)
[7]   Nanodiamonds suppress the growth of lithium dendrites [J].
Cheng, Xin-Bing ;
Zhao, Meng-Qiang ;
Chen, Chi ;
Pentecost, Amanda ;
Maleski, Kathleen ;
Mathis, Tyler ;
Zhang, Xue-Qiang ;
Zhang, Qiang ;
Jiang, Jianjun ;
Gogotsi, Yury .
NATURE COMMUNICATIONS, 2017, 8
[8]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[9]   Cationic Surfactant-Based Electrolyte Additives for Uniform Lithium Deposition via Lithiophobic Repulsion Mechanisms [J].
Dai, Hongliu ;
Xi, Kai ;
Liu, Xin ;
Lai, Chao ;
Zhang, Shanqing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (50) :17515-17521
[10]   Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy [J].
Deb, A ;
Bergmann, U ;
Cramer, SP ;
Cairns, EJ .
ELECTROCHIMICA ACTA, 2005, 50 (25-26) :5200-5207