Subordinacy analysis and absolutely continuous spectra for Sturm-Liouville equations with two singular endpoints

被引:1
作者
Clemence, DP [1 ]
机构
[1] N Carolina Agr & Technol State Univ, Dept Math, Greensboro, NC 27411 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1998年 / 41卷 / 01期
关键词
D O I
10.4153/CMB-1998-005-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gilbert-Pearson characterization of the spectrum is established for a generalized Sturm-Liouville equation with two singular endpoints. It is also shown that strong absolute continuity for the one singular endpoint problem guarantees absolute continuity for the two singular endpoint problem. As a consequence, we obtain the result that strong nonsubordinacy, at one singular endpoint, of a particular solution guarantees the nonexistence of subordinate solutions at both singular endpoints.
引用
收藏
页码:23 / 27
页数:5
相关论文
共 8 条
[2]   ABSOLUTE CONTINUITY OF HAMILTONIANS WITH VONNEUMANN WIGNER POTENTIALS .2. [J].
BEHNCKE, H .
MANUSCRIPTA MATHEMATICA, 1991, 71 (02) :163-181
[3]   SPECTRAL ASYMPTOTICS FOR STURM-LIOUVILLE EQUATIONS [J].
BENNEWITZ, C .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1989, 59 :294-338
[4]  
CASTILLO RRD, 1988, Q J MATH, V39, P269
[5]  
Clark S., 1993, DIFFER INTEGRAL EQU, V6, P573
[6]   ON SUBORDINACY AND ANALYSIS OF THE SPECTRUM OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS [J].
GILBERT, DJ ;
PEARSON, DB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 128 (01) :30-56
[8]  
STOLZ G, 1991, J REINE ANGEW MATH, V416, P1