CONVERGENCE OF A PROXIMAL POINT METHOD IN THE PRESENCE OF COMPUTATIONAL ERRORS IN HILBERT SPACES

被引:13
作者
Zaslavski, Alexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
convex programming; Hilbert space; proximal method; subdifferential; OPTIMIZATION; ALGORITHMS; MINIMIZATION; OPERATORS;
D O I
10.1137/090766930
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence of a proximal point method in a Hilbert space under the presence of computational errors. Most results known in the literature establish the convergence of proximal point methods when computational errors are summable. In the present paper the convergence of the method is established for nonsummable computational errors. We show that the proximal point method generates a good approximate solution if the sequence of computational errors is bounded from above by some constant.
引用
收藏
页码:2413 / 2421
页数:9
相关论文
共 17 条
  • [1] THE PROXIMAL AVERAGE: BASIC THEORY
    Bauschke, Heinz H.
    Goebel, Rafal
    Lucet, Yves
    Wang, Xianfu
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (02) : 766 - 785
  • [2] Bregman monotone optimization algorithms
    Bauschke, HH
    Borwein, JM
    Combettes, PL
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) : 596 - 636
  • [3] Burachik RS, 2009, COMPUT APPL MATH, V28, P15, DOI 10.1590/S1807-03022009000100002
  • [4] A proximal-projection method for finding zeros of set-valued operators
    Butnariu, Dan
    Kassay, Gabor
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) : 2096 - 2136
  • [5] PROXIMAL MINIMIZATION ALGORITHM WITH D-FUNCTIONS
    CENSOR, Y
    ZENIOS, SA
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 73 (03) : 451 - 464
  • [6] GULER O, 1991, SIAM J CONTROL OPTIM, V29, P403, DOI 10.1137/0329022
  • [7] Asymptotic convergence analysis of a new class of proximal point methods
    Hager, William W.
    Zhang, Hongchao
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (05) : 1683 - 1704
  • [8] Variational principles and well-posedness in optimization and calculus of variations
    Ioffe, AD
    Zaslavski, AJ
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) : 566 - 581
  • [9] Kassay G., 1985, Stud. Univ. Babes-Bolyai, V30, P9
  • [10] Lemaire B., 1989, Int. Ser. Numer. Math, V87, P73