Thermal transport equations in porous media from product-like fractal measure

被引:47
作者
El-Nabulsi, Rami Ahmad [1 ,2 ,3 ]
机构
[1] Chiang Mai Univ, Fac Sci, Res Ctr Quantum Technol, Chiang Mai, Thailand
[2] Athens Inst Educ & Res, Math Div, 8 Valaoritou St, Athens 10671, Greece
[3] Athens Inst Educ & Res, Phys Div, 8 Valaoritou St, Athens 10671, Greece
关键词
Fractal advection-diffusion equation; fractal Burger equation; fractals; heat damping; 44; 05; +e; 25; +f; SOLAR-FLARE GEOMETRIES; FLUID-FLOW; HEAT-TRANSFER; MASS-TRANSFER; NATURAL-CONVECTION; MODEL; CONDUCTIVITY; PERMEABILITY; LIQUID; FIELD;
D O I
10.1080/01495739.2021.1919585
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, we have used the concept of product-like fractal measure to analyze the fractal heat transfer in anisotropic media. This concept was introduced by Li and Ostoja-Starzewski in order to study anisotropic fractal elastic and continuum media. The theory is characterized by extended fluid, mass and heat transfer fractal equations besides the emergence of a damping heat term in the fractal advection-diffusion equation. Several applications are discussed and a number of features are revealed.
引用
收藏
页码:899 / 918
页数:20
相关论文
共 89 条
[1]   Multifractal analysis of solar magnetograms [J].
Abramenko, VI .
SOLAR PHYSICS, 2005, 228 (1-2) :29-42
[2]   Synthetic Fractal Modelling of Heterogeneous and Anisotropic Reservoirs for Use in Simulation Studies: Implications on Their Hydrocarbon Recovery Prediction [J].
Al-Zainaldin, Saud ;
Glover, Paul W. J. ;
Lorinczi, Piroska .
TRANSPORT IN POROUS MEDIA, 2017, 116 (01) :181-212
[3]  
Anderson J.D., 1991, Fundamentals of Aerodynamics, V2nd
[4]  
Anderson J.D., 1990, MODERN COMPRESSIBLE
[5]  
[Anonymous], 1983, Freeman
[6]   Solar flare geometries. I. The area fractal dimension [J].
Aschwanden, Markus J. ;
Aschwanden, Pascal D. .
ASTROPHYSICAL JOURNAL, 2008, 674 (01) :530-543
[7]   Solar flare geometries. II. The volume fractal dimension [J].
Aschwanden, Markus J. ;
Aschwanden, Pascal D. .
ASTROPHYSICAL JOURNAL, 2008, 674 (01) :544-553
[8]   Steady laminar flow of fractal fluids [J].
Balankin, Alexander S. ;
Mena, Baltasar ;
Susarrey, Orlando ;
Samayoa, Didier .
PHYSICS LETTERS A, 2017, 381 (06) :623-628
[9]   Electromagnetic fields in fractal continua [J].
Balankin, Alexander S. ;
Mena, Baltasar ;
Patino, Julian ;
Morales, Daniel .
PHYSICS LETTERS A, 2013, 377 (10-11) :783-788
[10]   Map of fluid flow in fractal porous medium into fractal continuum flow [J].
Balankin, Alexander S. ;
Espinoza Elizarraraz, Benjamin .
PHYSICAL REVIEW E, 2012, 85 (05)