Yamabe and Quasi-Yamabe Solitons on Euclidean Submanifolds

被引:69
作者
Chen, Bang-Yen [1 ]
Deshmukh, Sharief [2 ]
机构
[1] Michigan State Univ, Dept Math, 619 Red Cedar Rd, E Lansing, MI 48824 USA
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Yamabe soliton; Quasi-Yamabe soliton; Euclidean hypersurface; Euclidean submanifolds; Position vector field; Torse-forming vector field; GEOMETRY;
D O I
10.1007/s00009-018-1237-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we initiate the study of Yamabe and quasi-Yamabe solitons on Euclidean submanifolds whose soliton fields are the tangential components of their position vector fields. Several fundamental results of such solitons were proved. In particular, we classify such Yamabe and quasi-Yamabe solitons on Euclidean hypersurfaces.
引用
收藏
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 2011, Pseudo-Riemannian geometry, [delta]-invariants and applications
[2]  
Chen B. Y., 2017, Arab J. Math. Sci., V23, P1
[3]  
Chen B.-y, 1973, J DIFFERENTIAL GEOME, V8, P589
[4]  
Chen B.-Y., 2017, SERDICA MATH J, V43, P36
[5]  
Chen B.-Y., 1973, PURE APPL MATH, V22
[6]  
CHEN B.-Y., 2015, Balkan J. Geom. Appl., V20, P14
[7]  
Chen B-Y., 2015, TOTAL MEAN CURVATURE
[8]   Euclidean Submanifolds via Tangential Components of Their Position Vector Fields [J].
Chen, Bang-Yen .
MATHEMATICS, 2017, 5 (04)
[9]   A link between torse-forming vector fields and rotational hypersurfaces [J].
Chen, Bang-Yen ;
Verstraelen, Leopold .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (12)
[10]  
Chen BY, 2016, INT ELECTRON J GEOM, V9, P1