Melnikov chaos in a periodically driven Rayleigh-Duffing oscillator

被引:44
作者
Siewe, M. Siewe [1 ,2 ]
Tchawoua, C. [2 ]
Woafo, P. [3 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
[2] Univ Yaounde 1, Fac Sci, Dept Phys, Lab Mecan, Yaounde, Cameroon
[3] Univ Yaounde 1, Fac Sci, Dept Phys, Lab Nonlinear Modelling & Simulat Engn & Biol Phy, Yaounde, Cameroon
关键词
Homoclinic orbit; Melnikov chaos; Rayleigh oscillator; Bifurcation; BIFURCATION; MODEL; VIBRATION; PENDULUM; FIELD;
D O I
10.1016/j.mechrescom.2010.04.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The chaotic behavior of Duffing-Rayleigh oscillator under harmonic external excitation is investigated. Melnikov technique is used to detected the necessary conditions for chaotic motion of this deterministic system. The results show that the shape of the basin boundaries of attraction are fractals as the damping increases above the threshold of Melnikov chaos. The effect of damping parameter on phase portraits and Poincare maps, in addition to the numerical simulations of bifurcation diagram and maximum Lyapunov exponents is also investigated. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:363 / 368
页数:6
相关论文
共 21 条
[1]   Global and local control of homoclinic and heteroclinic bifurcations [J].
Cao, HJ ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (08) :2411-2432
[2]   METAMORPHOSES OF BASIN BOUNDARIES IN NONLINEAR DYNAMIC-SYSTEMS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1986, 56 (10) :1011-1014
[3]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
[4]   ANALOG STUDY OF BIFURCATION STRUCTURES IN A VANDERPOL OSCILLATOR WITH A NONLINEAR RESTORING FORCE [J].
KAO, YH ;
WANG, CS .
PHYSICAL REVIEW E, 1993, 48 (04) :2514-2520
[5]   Melnikov's method for spatial periodic field and bifurcation in a modified sine-Gordon model [J].
Kenfack, A ;
Kofane, TC .
PHYSICA SCRIPTA, 1998, 58 (06) :659-663
[6]   CHAOS IN RF-DRIVEN LONG JOSEPHSON-JUNCTIONS IN THE PRESENCE OF AN EXTERNAL-FIELD [J].
KENFACK, A ;
KOFANE, TC .
PHYSICAL REVIEW B, 1995, 52 (14) :10359-10363
[7]   ORBITS HOMOCLINIC TO RESONANCES, WITH AN APPLICATION TO CHAOS IN A MODEL OF THE FORCED AND DAMPED SINE-GORDON EQUATION [J].
KOVACIC, G ;
WIGGINS, S .
PHYSICA D, 1992, 57 (1-2) :185-225
[8]  
KURAMOTO, 1980, CHEM OSCILLATIONS WA
[9]   A 2ND ORDER DIFFERENTIAL EQUATION WITH SINGULAR SOLUTIONS [J].
LEVINSON, N .
ANNALS OF MATHEMATICS, 1949, 50 (01) :127-153
[10]   Investigation on chaotic motion in hysteretic non-linear suspension system with multi-frequency excitations [J].
Li, SH ;
Yang, SP ;
Guo, WW .
MECHANICS RESEARCH COMMUNICATIONS, 2004, 31 (02) :229-236