Hemivariational Inequality Approach to Evolutionary Constrained Problems on Star-Shaped Sets

被引:14
作者
Gasinski, Leszek [1 ]
Liu, Zhenhai [2 ]
Migorski, Stanislaw [1 ]
Ochal, Anna [1 ]
Peng, Zijia [2 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, PL-30348 Krakow, Poland
[2] Guangxi Univ Nationalities, Coll Sci, Nanning 530006, Guangxi, Peoples R China
关键词
Variational inequality; Evolutionary inclusion; Star-shaped set; L-pseudomonotone operator; Clarke subgradient; Distance function; Surjectivity result; EQUATIONS;
D O I
10.1007/s10957-014-0587-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider a nonconvex evolutionary constrained problem for a star-shaped set. The problem is a generalization of the classical evolution variational inequality of parabolic type. We provide an existence result; the proof is based on the hemivariational inequality approach, a surjectivity theorem for multivalued pseudomonotone operators in reflexive Banach spaces, and a penalization method. The admissible set of constraints is closed and star-shaped with respect to a certain ball; this allows one to use a discontinuity property of the generalized Clarke subdifferential of the distance function. An application of our results to a heat conduction problem with nonconvex constraints is provided.
引用
收藏
页码:514 / 533
页数:20
相关论文
共 20 条
[1]  
[Anonymous], 2003, INTRO NONLINEAR ANAL, DOI DOI 10.1007/978-1-4419-9158-4
[2]   Monotonicity methods for nonlinear evolution equations [J].
Berkovits, J ;
Mustonen, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (12) :1397-1405
[3]  
Browder F.E., 1972, J. Funct. Anal, V11, P251, DOI DOI 10.1016/0022-1236(72)90070-5
[4]  
Clarke F.H, 1983, OPTIMIZATION NONSMOO
[5]   A system of evolution hemivariational inequalities modeling thermoviscoelastic frictional contact [J].
Denkowski, Z ;
Migórski, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (08) :1415-1441
[6]   ON THE HEMIVARIATIONAL INEQUALITY APPROACH TO NONCONVEX CONSTRAINED PROBLEMS IN THE THEORY OF VON KARMAN PLATES [J].
GOELEVEN, D .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (11) :861-866
[7]   ON SOME NON-LINEAR ELLIPTIC DIFFERENTIAL-FUNCTIONAL EQUATIONS [J].
HARTMAN, P ;
STAMPACCHIA, G .
ACTA MATHEMATICA UPPSALA, 1966, 115 (3-4) :271-+
[8]   VARIATIONAL INEQUALITIES [J].
LIONS, JL ;
STAMPACC.G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1967, 20 (03) :493-&
[9]  
Liu ZH, 1999, NONLINEAR ANAL-THEOR, V36, P91
[10]   Boundary hemivariational inequality of parabolic type [J].
Migórski, S ;
Ochal, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (04) :579-596