A Littlewood-Richardson rule for dual stable Grothendieck polynomials

被引:10
作者
Galashin, Pavel [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Dual stable Grothendieck; polynomials; Reverse plane partitions; Crystal operators; Littlewood-Richardson rule;
D O I
10.1016/j.jcta.2017.04.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given skew shape, we build a crystal graph on the set of all reverse plane partitions that have this shape. As a consequence, we get a simple extension of the Littlewood- Richardson rule for the expansion of the corresponding dual stable Grothendieck polynomial in terms of Schur polynomials. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:23 / 35
页数:13
相关论文
共 14 条
[1]  
Bandlow J., 2012, ELECTRON J COMB, V19, P39
[2]   A Littlewood-Richardson rule for the K-theory of Grassmannians [J].
Buch, AS .
ACTA MATHEMATICA, 2002, 189 (01) :37-78
[3]  
Fomin Sergey, 1993, P 5 C FORM POW SER A, V153, P123
[4]  
Fulton W., 1997, MATH SOC STUD TEXTS, V35
[5]  
Galashin P., 2016, ELECTRON J COMB, V23, P28
[6]  
Kashiwara M., 1995, CMS C P, V16, P155
[7]   Combinatorial Hopf Algebras and K-Homology of Grassmanians [J].
Lam, Thomas ;
Pylyavskyy, Pavlo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[8]  
LASCOUX A, 1982, CR ACAD SCI I-MATH, V295, P629
[9]  
Lascoux A., 1978, RIC SCI, V109, P129
[10]  
Lascoux A., 1978, C. R. Acad. Sci. Paris Ser. A-B, V286, pA323